Experimental neuromorphic computing based on quantum memristor
- URL: http://arxiv.org/abs/2504.18694v2
- Date: Tue, 01 Jul 2025 17:42:54 GMT
- Title: Experimental neuromorphic computing based on quantum memristor
- Authors: Mirela Selimović, Iris Agresti, Michał Siemaszko, Joshua Morris, Borivoje Dakić, Riccardo Albiero, Andrea Crespi, Francesco Ceccarelli, Roberto Osellame, Magdalena Stobińska, Philip Walther,
- Abstract summary: We show how the memristive feedback loop enhances the nonlinearity and hence the performance of the tested algorithms.<n>In these cases, we highlight the essential role of the quantum memristive element and demonstrate the possibility of using it as a building block in more sophisticated networks.
- Score: 0.2618499987393917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has recently developed novel approaches, mimicking the synapses of the human brain to achieve similarly efficient learning strategies. Such an approach retains the universality of standard methods, while attempting to circumvent their excessive requirements, which hinder their scalability. In this landscape, quantum (or quantum inspired) algorithms may bring enhancement. However, high-performing neural networks invariably display nonlinear behaviours, which poses a challenge to quantum platforms, given the intrinsically linear evolution of closed systems. We propose a strategy to enhance the nonlinearity achievable in this context, without resorting to entangling gates and report the first neuromorphic architecture based on a photonic quantum memristor. In detail, we show how the memristive feedback loop enhances the nonlinearity and hence the performance of the tested algorithms. We benchmark our model on four tasks, a nonlinear function and three time series prediction. In these cases, we highlight the essential role of the quantum memristive element and demonstrate the possibility of using it as a building block in more sophisticated networks.
Related papers
- Quantum Convolutional Neural Network with Nonlinear Effects and Barren Plateau Mitigation [0.0]
Quantum neural networks (QNNs) leverage quantum entanglement and superposition to enable large-scale parallel linear computation.<n>However, their practical deployment is hampered by the lack of intrinsic nonlinear operations and the barren plateau phenomenon.<n>We propose a quantum neural convolutional network (QCNN) architecture that simultaneously addresses both issues.
arXiv Detail & Related papers (2025-08-04T14:26:48Z) - Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
We develop a structure-preserving approach to characterizing non-Markovian evolution using the time-convolutionless (TCL) master equation.<n>We demonstrate our methodology using experimental data from a superconducting qubit at the Quantum Device Integration Testbed (QuDIT) at Lawrence Livermore National Laboratory.<n>These findings provide valuable insights into efficient modeling strategies for open quantum systems, with implications for quantum control and error mitigation in near-term quantum processors.
arXiv Detail & Related papers (2025-03-28T04:43:24Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Non-linear classification capability of quantum neural networks due to emergent quantum metastability [0.0]
We show that effective non-linearities can be implemented in quantum neural networks.
By using a quantum neural network whose architecture is inspired by dissipative many-body quantum spin models, we show that this mechanism indeed allows to realize non-linear data classification.
arXiv Detail & Related papers (2024-08-20T12:01:07Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Information-driven Nonlinear Quantum Neuron [0.0]
In this study, a hardware-efficient quantum neural network operating as an open quantum system is proposed.
We show that this dissipative model based on repeated interactions, which allows for easy parametrization of input quantum information, exhibits differentiable, non-linear activation functions.
arXiv Detail & Related papers (2023-07-18T07:12:08Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
We propose a new quantum neural network model for quantum neural computing.
Our model circumvents the problem that the state-space size grows exponentially with the number of neurons.
We benchmark our model for handwritten digit recognition and other nonlinear classification tasks.
arXiv Detail & Related papers (2023-05-15T11:16:47Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Realization of a quantum neural network using repeat-until-success
circuits in a superconducting quantum processor [0.0]
In this paper, we use repeat-until-success circuits enabled by real-time control-flow feedback to realize quantum neurons with non-linear activation functions.
As an example, we construct a minimal feedforward quantum neural network capable of learning all 2-to-1-bit Boolean functions.
This model is shown to perform non-linear classification and effectively learns from multiple copies of a single training state consisting of the maximal superposition of all inputs.
arXiv Detail & Related papers (2022-12-21T03:26:32Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Markovian Quantum Neuroevolution for Machine Learning [0.0]
We introduce a quantum neuroevolution algorithm that autonomously finds near-optimal quantum neural networks for different machine-learning tasks.
In particular, we establish a one-to-one mapping between quantum circuits and directed graphs, and reduce the problem of finding the appropriate gate sequences.
arXiv Detail & Related papers (2020-12-30T12:42:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.