Temporal Neural Operator for Modeling Time-Dependent Physical Phenomena
- URL: http://arxiv.org/abs/2504.20249v1
- Date: Mon, 28 Apr 2025 20:40:19 GMT
- Title: Temporal Neural Operator for Modeling Time-Dependent Physical Phenomena
- Authors: W. Diab, M. Al-Kobaisi,
- Abstract summary: Neural (NOs) are machine learning models designed to solve differential equations (PDEs) by partial learning to map between function spaces.<n>They struggle in mapping the temporal dynamics of time-dependent PDEs, especially for time steps not explicitly seen during training.<n>Most NOs tend to be prohibitively costly to train, especially for higher-dimensional PDEs.<n>We propose the Temporal Neural Operator (TNO), an efficient neural operator designed for time-dependent PDEs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural Operators (NOs) are machine learning models designed to solve partial differential equations (PDEs) by learning to map between function spaces. Neural Operators such as the Deep Operator Network (DeepONet) and the Fourier Neural Operator (FNO) have demonstrated excellent generalization properties when mapping between spatial function spaces. However, they struggle in mapping the temporal dynamics of time-dependent PDEs, especially for time steps not explicitly seen during training. This limits their temporal accuracy as they do not leverage these dynamics in the training process. In addition, most NOs tend to be prohibitively costly to train, especially for higher-dimensional PDEs. In this paper, we propose the Temporal Neural Operator (TNO), an efficient neural operator specifically designed for spatio-temporal operator learning for time-dependent PDEs. TNO achieves this by introducing a temporal-branch to the DeepONet framework, leveraging the best architectural design choices from several other NOs, and a combination of training strategies including Markov assumption, teacher forcing, temporal bundling, and the flexibility to condition the output on the current state or past states. Through extensive benchmarking and an ablation study on a diverse set of example problems we demonstrate the TNO long range temporal extrapolation capabilities, robustness to error accumulation, resolution invariance, and flexibility to handle multiple input functions.
Related papers
- A foundational neural operator that continuously learns without
forgetting [1.0878040851638]
We introduce the concept of the Neural Combinatorial Wavelet Neural Operator (NCWNO) as a foundational model for scientific computing.
The NCWNO is specifically designed to excel in learning from a diverse spectrum of physics and continuously adapt to the solution operators associated with parametric partial differential equations (PDEs)
The proposed foundational model offers two key advantages: (i) it can simultaneously learn solution operators for multiple parametric PDEs, and (ii) it can swiftly generalize to new parametric PDEs with minimal fine-tuning.
arXiv Detail & Related papers (2023-10-29T03:20:10Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
It remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues.
We propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF.
arXiv Detail & Related papers (2023-08-25T08:54:41Z) - Physics informed WNO [0.0]
We propose a physics-informed Wavelet Operator (WNO) for learning the solution operators of families of parametric partial differential equations (PDEs) without labeled training data.
The efficacy of the framework is validated and illustrated with four nonlinear neural systems relevant to various fields of engineering and science.
arXiv Detail & Related papers (2023-02-12T14:31:50Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Convolutional Neural Operators for robust and accurate learning of PDEs [11.562748612983956]
We present novel adaptations for convolutional neural networks to process functions as inputs and outputs.
The resulting architecture is termed as convolutional neural operators (CNOs)
We prove a universality theorem to show that CNOs can approximate operators arising in PDEs to desired accuracy.
arXiv Detail & Related papers (2023-02-02T15:54:45Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
This work presents a partial differential equation (PDE) based framework which improves the dynamics modeling capability.
We propose a neural operator that can handle time continuously without requiring iterative operations or specific grids of temporal discretization.
Our framework opens up a new way for a continuous representation of neural networks that can be readily adopted for real-world applications.
arXiv Detail & Related papers (2023-02-02T03:47:52Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - EXIT: Extrapolation and Interpolation-based Neural Controlled
Differential Equations for Time-series Classification and Forecasting [19.37382379378985]
neural controlled differential equations (NCDEs) are considered as a breakthrough in deep learning.
In this work, we enhance NCDEs by redesigning their core part, i.e., generating a continuous path from a discrete time-series input.
Our NCDE design can use both the extrapolation and the extrapolated information for downstream machine learning tasks.
arXiv Detail & Related papers (2022-04-19T09:37:36Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
We propose a novel family of Neural ODEs with time-varying weights.
We outperform previous Neural ODE variants in both speed and representational capacity.
arXiv Detail & Related papers (2020-05-05T01:41:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.