論文の概要: Evaluating the AI-Lab Intervention: Impact on Student Perception and Use of Generative AI in Early Undergraduate Computer Science Courses
- arxiv url: http://arxiv.org/abs/2505.00100v1
- Date: Wed, 30 Apr 2025 18:12:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.144893
- Title: Evaluating the AI-Lab Intervention: Impact on Student Perception and Use of Generative AI in Early Undergraduate Computer Science Courses
- Title(参考訳): AI-Labインターベンションの評価: 初期のコンピュータサイエンス科における学生の認知と生成AI利用への影響
- Authors: Ethan Dickey, Andres Bejarano, Rhianna Kuperus, Bárbara Fagundes,
- Abstract要約: Generative AI(GenAI)はコンピュータサイエンス教育に急速に参入しつつある。
形式コースにおける道具使用の指針となる構造的足場の研究のギャップを伴う過信共存に関する懸念。
本研究は,「AI-Lab」の介入が大学生に与える影響について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GenAI) is rapidly entering computer science education, yet its effects on student learning, skill development, and perceptions remain underexplored. Concerns about overreliance coexist with a gap in research on structured scaffolding to guide tool use in formal courses. This study examines the impact of a dedicated "AI-Lab" intervention -- emphasizing guided scaffolding and mindful engagement -- on undergraduate students in Data Structures and Algorithms, Competitive Programming, and first-year engineering courses at Purdue University. Over three semesters, we integrated AI-Lab modules into four mandatory and elective courses, yielding 831 matched pre- and post-intervention survey responses, alongside focus group discussions. Employing a mixed-methods approach, we analyzed quantitative shifts in usage patterns and attitudes as well as qualitative narratives of student experiences. While the overall frequency of GenAI usage for homework or programming projects remained largely stable, we observed large effect sizes in comfort and openness across conceptual, debugging, and homework problems. Notably, usage patterns for debugging also shifted statistically significantly, reflecting students' more mindful and deliberate approach. Focus group discussions corroborated these results, suggesting that the intervention "bridged the gap" between naive GenAI usage and more nuanced, reflective integration of AI tools into coursework, ultimately heightening students' awareness of their own skill development. These findings suggest that structured, scaffolded interventions can enable students to harness GenAI's benefits without undermining essential competencies. We offer evidence-based recommendations for educators seeking to integrate GenAI responsibly into computing curricula and identify avenues for future research on GenAI-supported pedagogy.
- Abstract(参考訳): ジェネレーティブAI(GenAI)はコンピュータサイエンス教育に急速に参入しつつあるが、その影響は学生の学習、スキル開発、知覚に及ばない。
形式コースにおける道具使用の指針となる構造的足場の研究のギャップを伴う過信共存に関する懸念。
本研究では,データ構造・アルゴリズム,競争プログラミング,パーデュー大学における1年間の工学科目における学部生に対する「AI-Lab」の専門的介入(指導的足場とマインドフルエンゲージメント)が与える影響について検討する。
AI-Labモジュールを4つの必須かつ選択的なコースに統合し、フォーカスグループでの議論に加えて、前と後の調査の回答にマッチした861が得られました。
混合手法を用いて、学生体験の質的物語だけでなく、使用パターンや態度の量的変化を分析した。
宿題やプログラミングプロジェクトにおけるGenAIの使用頻度は概ね安定していたが,概念的,デバッグ的,宿題的問題にまたがる快適さとオープンさに大きな効果が見られた。
特にデバッギングの利用パターンは統計的に大きく変化し、学生のよりマインドフルで慎重なアプローチが反映された。
フォーカスグループの議論はこれらの結果を裏付け、この介入が、素直なGenAIの使用と、より微妙で反射的なAIツールのコースワークへの統合の間に「ギャップを埋める」ことを示唆し、最終的に学生が自身のスキル開発に対する認識を高めることを示唆した。
これらの結果から,構造的,足場的介入は,学生が本質的な能力を損なうことなく,GenAIのメリットを活用できることが示唆された。
我々は、GenAIを計算カリキュラムに統合し、GenAIが支援する教育の今後の研究の道筋を特定するためのエビデンスベースのレコメンデーションを提供する。
関連論文リスト
- Student's Use of Generative AI as a Support Tool in an Advanced Web Development Course [0.5371337604556311]
我々は、学部生のためのWeb開発コースにおいて、学習、創造性、生産性のための支援ツールとしてのGenAIの利用を分析する。
学生は、学習と生産性の向上を報告して、異なるタスクでGenAIを使用した。
論文 参考訳(メタデータ) (2025-03-19T20:34:21Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Navigating Ethical Challenges in Generative AI-Enhanced Research: The ETHICAL Framework for Responsible Generative AI Use [0.0]
生成人工知能(GenAI)の急速な普及は、機会と倫理的課題の両方を提示する。
本稿では、研究におけるGenAIの責任を負うための実践的ガイドであるETHICALフレームワークを開発する。
論文 参考訳(メタデータ) (2024-12-11T05:49:11Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
コンピュータ学生のGenAI利用と認識に関する先行研究は限られている。
私たちは、小さなエンジニアリングに焦点を当てたR1大学で、すべてのコンピュータサイエンス専攻を調査しました。
我々は,GenAIと教育に関する新たな議論に対する知見の影響について論じる。
論文 参考訳(メタデータ) (2024-11-17T20:17:47Z) - LLMs Integration in Software Engineering Team Projects: Roles, Impact, and a Pedagogical Design Space for AI Tools in Computing Education [7.058964784190549]
この作業では、ChatGPTやGitHub Copilotなど、生成AI(GenAI)モデルとツールの影響を、教育的なレンズで調査する。
我々の結果は、チームワーク、チーム効率、チームダイナミクスにおけるGenAIの役割と意味を理解する上での特別なギャップに対処します。
論文 参考訳(メタデータ) (2024-10-30T14:43:33Z) - Hey GPT, Can You be More Racist? Analysis from Crowdsourced Attempts to Elicit Biased Content from Generative AI [41.96102438774773]
本研究は,GenAIツールから偏りのあるアウトプットを抽出するプロンプトの設計に参加者が挑戦する大学レベルのコンペから得られた知見を提示する。
我々は、競争の提出を定量的に質的に分析し、GenAIにおける多様なバイアスと、GenAIにおけるバイアスを誘発する参加者の戦略を同定する。
論文 参考訳(メタデータ) (2024-10-20T18:44:45Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - BoilerTAI: A Platform for Enhancing Instruction Using Generative AI in Educational Forums [0.0]
本稿では,Generative AI(GenAI)とオンライン教育フォーラムをシームレスに統合する,実用的でスケーラブルなプラットフォームについて述べる。
このプラットフォームは、学生ポストとLarge Language Model(LLM)との対話を円滑に進めることによって、指導スタッフが反応を効率的に管理し、洗練し、承認することを可能にする。
論文 参考訳(メタデータ) (2024-09-20T04:00:30Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
我々は、モデルベースエンジニアリング(MBM&E)の限界に対処する手段として、生成人工知能(GenAI)を用いることができると論じる。
我々は、エンジニアの学習曲線の削減、レコメンデーションによる効率の最大化、ドメイン問題を理解するための推論ツールとしてのGenAIの使用を提案する。
論文 参考訳(メタデータ) (2024-07-09T23:13:26Z) - OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning [43.87507227859493]
本稿では,XAI 手法を人間中心で評価するオープンソースフレームワーク OpenHEXAI について述べる。
OpenHEAXIは、XAIメソッドの人間中心ベンチマークを促進するための、最初の大規模なインフラ構築である。
論文 参考訳(メタデータ) (2024-02-20T22:17:59Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
我々は、中核的なプログラミングコースでGenAIを効果的に活用するために、学生を指導するフレームワーク「AI-Lab」を紹介した。
GenAIの誤りを特定し、修正することで、学生は学習プロセスを充実させる。
教育者にとって、AI-Labは、学習経験におけるGenAIの役割に対する学生の認識を探索するメカニズムを提供する。
論文 参考訳(メタデータ) (2023-08-23T17:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。