論文の概要: LLMs Integration in Software Engineering Team Projects: Roles, Impact, and a Pedagogical Design Space for AI Tools in Computing Education
- arxiv url: http://arxiv.org/abs/2410.23069v1
- Date: Wed, 30 Oct 2024 14:43:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:29:03.600444
- Title: LLMs Integration in Software Engineering Team Projects: Roles, Impact, and a Pedagogical Design Space for AI Tools in Computing Education
- Title(参考訳): ソフトウェアエンジニアリングチームプロジェクトにおけるLLMの統合: コンピュータ教育におけるAIツールの役割、インパクト、および教育設計空間
- Authors: Ahmed Kharrufa, Sami Alghamdi, Abeer Aziz, Christopher Bull,
- Abstract要約: この作業では、ChatGPTやGitHub Copilotなど、生成AI(GenAI)モデルとツールの影響を、教育的なレンズで調査する。
我々の結果は、チームワーク、チーム効率、チームダイナミクスにおけるGenAIの役割と意味を理解する上での特別なギャップに対処します。
- 参考スコア(独自算出の注目度): 7.058964784190549
- License:
- Abstract: This work takes a pedagogical lens to explore the implications of generative AI (GenAI) models and tools, such as ChatGPT and GitHub Copilot, in a semester-long 2nd-year undergraduate Software Engineering Team Project. Qualitative findings from survey (39 students) and interviews (eight students) provide insights into the students' views on the impact of GenAI use on their coding experience, learning, and self-efficacy. Our results address a particular gap in understanding the role and implications of GenAI on teamwork, team-efficacy, and team dynamics. The analysis of the learning aspects is distinguished by the application of learning and pedagogy informed lenses to discuss the data. We propose a preliminary design space for GenAI-based programming learning tools highlighting the importance of considering the roles that GenAI can play during the learning process, the varying support-ability patterns that can be applied to each role, and the importance of supporting transparency in GenAI for team members and students in addition to educators.
- Abstract(参考訳): この研究は、中学2年生のソフトウェアエンジニアリングチームプロジェクトにおいて、ChatGPTやGitHub CopilotといったジェネレーティブAI(GenAI)モデルとツールの影響を探るために、教育的なレンズを使う。
調査 (39名) とインタビュー (8名) から得られた質的な知見は, GenAI の使用がプログラミング経験,学習,自己効力感に与える影響について, 学生の見解に影響を及ぼす。
我々の結果は、チームワーク、チーム効率、チームダイナミクスにおけるGenAIの役割と意味を理解する上での特別なギャップに対処します。
学習面の分析は、学習用および教育用情報レンズを用いてデータを議論することで区別される。
本稿では、学習過程においてGenAIが果たすべき役割、各役割に適用可能なサポート可能性パターンの変化、そして、教育者に加えて、チームメンバーや学生のGenAIにおける透明性を支援することの重要性を浮き彫りにした、GenAIベースのプログラミング学習ツールの予備設計空間を提案する。
関連論文リスト
- Students' Perceptions and Use of Generative AI Tools for Programming Across Different Computing Courses [1.7811951520198]
生成的人工知能(GenAI)の教育における利用に対する学生の認識と意見の調査が注目されている。
学生がGenAIツールをどのように認識し利用しているかは、背景知識を含む多くの要因に依存する可能性がある。
ヨーロッパ大の研究大学の全コンピュータプログラムの学生を対象に,3つの調査を行った。
論文 参考訳(メタデータ) (2024-10-09T13:24:06Z) - On the Limitations and Prospects of Machine Unlearning for Generative AI [7.795648142175443]
Generative AI(GenAI)は、潜伏変数やその他のデータモダリティから現実的で多様なデータサンプルを合成することを目的としている。
GenAIは自然言語、画像、オーディオ、グラフなど、さまざまな領域で顕著な成果を上げている。
しかし、データプライバシ、セキュリティ、倫理に課題やリスクも生じている。
論文 参考訳(メタデータ) (2024-08-01T08:35:40Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
我々は、モデルベースエンジニアリング(MBM&E)の限界に対処する手段として、生成人工知能(GenAI)を用いることができると論じる。
我々は、エンジニアの学習曲線の削減、レコメンデーションによる効率の最大化、ドメイン問題を理解するための推論ツールとしてのGenAIの使用を提案する。
論文 参考訳(メタデータ) (2024-07-09T23:13:26Z) - Large Language Models Meet User Interfaces: The Case of Provisioning Feedback [6.626949691937476]
我々は、GenAIを教育ツールに組み込むためのフレームワークを提案し、我々のツールであるFeedback Copilotにその応用を実証する。
この研究は、教育におけるGenAIの将来についてのコースをグラフ化している。
論文 参考訳(メタデータ) (2024-04-17T05:05:05Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - Generative Artificial Intelligence in Learning Analytics:
Contextualising Opportunities and Challenges through the Learning Analytics
Cycle [0.0]
ジェネレーティブ人工知能(GenAI)は、教育を変革し、人間の生産性を高める大きな可能性を秘めている。
本稿では,GenAIが学習分析(LA)にもたらす可能性と課題について述べる。
我々は、GenAIが非構造化データの解析、合成学習データの生成、マルチモーダル学習者相互作用の強化、対話的・説明的分析の進展、パーソナライゼーションと適応的介入の促進において重要な役割を果たすことを示唆する。
論文 参考訳(メタデータ) (2023-11-30T07:25:34Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
我々は、中核的なプログラミングコースでGenAIを効果的に活用するために、学生を指導するフレームワーク「AI-Lab」を紹介した。
GenAIの誤りを特定し、修正することで、学生は学習プロセスを充実させる。
教育者にとって、AI-Labは、学習経験におけるGenAIの役割に対する学生の認識を探索するメカニズムを提供する。
論文 参考訳(メタデータ) (2023-08-23T17:20:37Z) - Tool Learning with Foundation Models [158.8640687353623]
基礎モデルの出現により、AIシステムは、人間としてのツールの使用に等しく適応できる可能性がある。
その大きな可能性にもかかわらず、この分野における重要な課題、機会、そして将来の取り組みに関する包括的な理解はいまだに欠けている。
論文 参考訳(メタデータ) (2023-04-17T15:16:10Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Investigating Explainability of Generative AI for Code through
Scenario-based Design [44.44517254181818]
生成AI(GenAI)技術は成熟し、ソフトウェア工学のようなアプリケーションドメインに適用されています。
私たちは43人のソフトウェアエンジニアと9つのワークショップを開催しました。そこでは、最先端のジェネレーティブAIモデルの実例を使って、ユーザの説明可能性のニーズを導き出しました。
我々の研究は、GenAIのコードに対する説明可能性の必要性を探求し、新しいドメインにおけるXAIの技術開発を人間中心のアプローチがいかに促進するかを実証する。
論文 参考訳(メタデータ) (2022-02-10T08:52:39Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。