論文の概要: PeSANet: Physics-encoded Spectral Attention Network for Simulating PDE-Governed Complex Systems
- arxiv url: http://arxiv.org/abs/2505.01736v1
- Date: Sat, 03 May 2025 08:25:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.24589
- Title: PeSANet: Physics-encoded Spectral Attention Network for Simulating PDE-Governed Complex Systems
- Title(参考訳): PeSANet: PDE-Governed Complex Systems シミュレーションのための物理符号化分光アテンションネットワーク
- Authors: Han Wan, Rui Zhang, Qi Wang, Yang Liu, Hao Sun,
- Abstract要約: 本研究では,物理符号化されたスペクトル注意ネットワーク(PeSANet)を提案する。
このモデルは、2つの重要な構成要素から構成される: 制限されたデータから局所微分作用素を近似するためにハード制約を使用する物理符号化ブロックと、長距離グローバル依存関係をキャプチャするスペクトル拡張ブロックである。
- 参考スコア(独自算出の注目度): 17.821949355119997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately modeling and forecasting complex systems governed by partial differential equations (PDEs) is crucial in various scientific and engineering domains. However, traditional numerical methods struggle in real-world scenarios due to incomplete or unknown physical laws. Meanwhile, machine learning approaches often fail to generalize effectively when faced with scarce observational data and the challenge of capturing local and global features. To this end, we propose the Physics-encoded Spectral Attention Network (PeSANet), which integrates local and global information to forecast complex systems with limited data and incomplete physical priors. The model consists of two key components: a physics-encoded block that uses hard constraints to approximate local differential operators from limited data, and a spectral-enhanced block that captures long-range global dependencies in the frequency domain. Specifically, we introduce a novel spectral attention mechanism to model inter-spectrum relationships and learn long-range spatial features. Experimental results demonstrate that PeSANet outperforms existing methods across all metrics, particularly in long-term forecasting accuracy, providing a promising solution for simulating complex systems with limited data and incomplete physics.
- Abstract(参考訳): 偏微分方程式(PDE)によって支配される複雑なシステムの正確なモデリングと予測は、様々な科学・工学分野において重要である。
しかし、従来の数値法は、不完全または未知の物理法則のために現実のシナリオで苦労する。
一方、機械学習のアプローチは、観測データが少ないことと、局所的な特徴やグローバルな特徴を捉えることの難しさに直面すると、効果的に一般化できないことが多い。
この目的のために,物理符号化されたスペクトル注意ネットワーク (PeSANet) を提案する。
このモデルは、2つの重要な構成要素から構成される: 制限されたデータから局所微分作用素を近似するためにハード制約を使用する物理符号化ブロックと、周波数領域における長距離グローバルな依存関係をキャプチャするスペクトル拡張ブロックである。
具体的には、スペクトル間関係をモデル化し、長距離空間の特徴を学習するための新しいスペクトル注意機構を導入する。
実験の結果、PeSANetは、特に長期予測精度において、すべてのメトリクスで既存の手法よりも優れており、限られたデータと不完全な物理で複雑なシステムをシミュレートするための有望なソリューションを提供することが示された。
関連論文リスト
- World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks [53.98633183204453]
本稿では,車載ネットワークにおけるパケット完全性認識情報(CAoI)の年齢を最小化するために,新しい世界モデルに基づく学習フレームワークを提案する。
mmWave V2X環境の動的モデルを共同で学習し、リンクスケジューリングの方法を学ぶための軌跡を想像するために使用する世界モデルフレームワークを提案する。
特に、長期的な政策は環境相互作用の代わりに、異なる想像軌道で学習される。
論文 参考訳(メタデータ) (2025-05-03T06:23:18Z) - Spatio-spectral graph neural operator for solving computational mechanics problems on irregular domain and unstructured grid [0.9208007322096533]
本稿では空間GNNとスペクトルGNNを効果的に統合した空間スペクトルグラフニューラル演算子(Sp$2$GNO)を提案する。
このフレームワークは個々のメソッドの制限を緩和し、任意の測地をまたいだ解演算子の学習を可能にする。
論文 参考訳(メタデータ) (2024-09-01T03:59:40Z) - Enforcing the Principle of Locality for Physical Simulations with Neural Operators [0.0]
時間依存偏微分方程式(PDE)は、物理学における局所性の原理に従って厳密に局所依存的である。
ディープラーニングアーキテクチャは、ローカルな予測を行うための情報の範囲を必然的に増やすため、ローカル依存を厳格に強制することはできない。
本稿では,局所的な予測を行うニューラル演算子の情報範囲を厳格に制限するデータ分解手法を提案する。
論文 参考訳(メタデータ) (2024-05-02T14:24:56Z) - GATGPT: A Pre-trained Large Language Model with Graph Attention Network
for Spatiotemporal Imputation [19.371155159744934]
実世界の環境では、センサーの故障やデータ転送エラーなどの問題により、そのようなデータには欠落する要素がしばしば含まれる。
時間的計算の目的は、観測された時系列における固有の空間的および時間的関係を理解することによって、これらの欠落値を推定することである。
伝統的に、複雑な時間的計算は特定のアーキテクチャに依存しており、適用可能性の制限と高い計算複雑性に悩まされている。
対照的に、我々のアプローチは、事前訓練された大規模言語モデル(LLM)を複雑な時間的インプットに統合し、画期的なフレームワークであるGATGPTを導入している。
論文 参考訳(メタデータ) (2023-11-24T08:15:11Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Towards Multi-spatiotemporal-scale Generalized PDE Modeling [4.924631198058705]
渦流および速度関数形式における流体力学問題に対する様々なFNOとU-Netのようなアプローチの比較を行う。
一つの代理モデルを用いて異なるPDEパラメータと時間スケールへの一般化の有望な結果を示す。
論文 参考訳(メタデータ) (2022-09-30T17:40:05Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z) - Using Deep Learning to Explore Local Physical Similarity for
Global-scale Bridging in Thermal-hydraulic Simulation [4.350727579753697]
現在の熱水和コードでは、実際の植物条件をシミュレートする際の信頼性が制限されている。
本稿では,これらの課題を克服するためのデータ駆動型特徴類似度測定FFSMを提案する。
深層学習は局所的な物理的特徴とシミュレーションエラーの関係の構築と探索に応用される。
論文 参考訳(メタデータ) (2020-01-06T20:14:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。