論文の概要: Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems
- arxiv url: http://arxiv.org/abs/2501.08428v2
- Date: Fri, 13 Jun 2025 01:08:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 15:41:31.018672
- Title: Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems
- Title(参考訳): 複雑系の実時間予測のための物理インフォームド潜時ニューラル演算子
- Authors: Sharmila Karumuri, Lori Graham-Brady, Somdatta Goswami,
- Abstract要約: 本稿では,制御物理を直接学習プロセスに統合する物理インフォームトニューラルネットワークフレームワークPI-Latent-NOを提案する。
私たちのアーキテクチャでは、ソリューションの低次元表現を学習するLatent-DeepONetと、この遅延表現を物理空間にマッピングするRestruction-DeepONetという、2つの結合したDeepONetsトレーニングのエンドツーエンドが特徴です。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep operator network (DeepONet) has shown significant promise as surrogate models for systems governed by partial differential equations (PDEs), enabling accurate mappings between infinite-dimensional function spaces. However, for complex, high-dimensional systems, these models often require heavily overparameterized networks, leading to long training times and convergence difficulties. Latent DeepONet addresses some of these challenges by introducing a two-step approach: first learning a reduced latent space using a separate model, followed by operator learning within this latent space. While efficient, this method is inherently data-driven and lacks mechanisms for incorporating physical laws, limiting its robustness and generalizability in data-scarce settings. In this work, we propose PI-Latent-NO, a physics-informed latent neural operator framework that integrates governing physics directly into the learning process. Our architecture features two coupled DeepONets trained end-to-end: a Latent-DeepONet that learns a low-dimensional representation of the solution, and a Reconstruction-DeepONet that maps this latent representation back to the physical space. By embedding PDE constraints into the training via automatic differentiation, our method eliminates the need for labeled training data and ensures physics-consistent predictions. The proposed framework is both memory and compute-efficient, exhibiting near-constant scaling with problem size and demonstrating significant speedups over traditional physics-informed operator models. We validate our approach on a range of high-dimensional parametric PDEs, showcasing its accuracy, scalability, and suitability for real-time prediction in complex physical systems.
- Abstract(参考訳): ディープ・オペレーター・ネットワーク(DeepONet)は、偏微分方程式(PDE)によって支配される系の代理モデルとして、無限次元関数空間間の正確なマッピングを可能にしている。
しかし、複雑で高次元のシステムでは、これらのモデルはしばしば過度にパラメータ化されたネットワークを必要とし、長い訓練時間と収束困難をもたらす。
Latent DeepONetは、2段階のアプローチを導入することで、これらの課題に対処している。
効率的ではあるが、本手法は本質的にデータ駆動であり、物理法則を組み込むメカニズムが欠如しており、データスカース設定の堅牢性と一般化性が制限されている。
本研究では,物理を直接学習プロセスに統合する物理インフォームトニューラルネットワークフレームワークPI-Latent-NOを提案する。
私たちのアーキテクチャでは、ソリューションの低次元表現を学習するLatent-DeepONetと、この遅延表現を物理空間にマッピングするRestruction-DeepONetという、2つの結合したDeepONetsトレーニングのエンドツーエンドが特徴です。
PDE制約を自動微分によってトレーニングに埋め込むことで、ラベル付きトレーニングデータの必要性を排除し、物理に一貫性のある予測を確実にする。
提案するフレームワークは、メモリと計算効率の両方で、問題サイズのほぼ一定スケールを示し、従来の物理インフォームド演算子モデルよりも大幅に高速化されている。
我々は,高次元パラメトリックPDEに対して,その精度,拡張性,複雑な物理系におけるリアルタイム予測に適していることを示す。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
新しい線形特徴空間におけるハイパースペクトルイメージング(HSI)とLiDARデータの統合は、HSIに固有の高次元性と冗長性に起因する課題に対する有望な解決策を提供する。
本研究では、双方向逆畳み込み畳み込みニューラルネットワーク(CNN)経路と特殊空間解析ブロックを併用した、二重線型融合空間フレームワークを提案する。
提案手法は,データ処理や分類精度を向上するだけでなく,トランスフォーマーなどの先進モデルに係わる計算負担を軽減する。
論文 参考訳(メタデータ) (2024-11-30T01:08:08Z) - FB-HyDON: Parameter-Efficient Physics-Informed Operator Learning of Complex PDEs via Hypernetwork and Finite Basis Domain Decomposition [0.0]
ディープ・オペレータ・ネットワーク(DeepONet)とニューラル・オペレーターは無限次元の関数空間をマッピングし、ゼロショット超解像を行う能力において大きな注目を集めている。
本稿では,Finite Basis Physics-Informed HyperDeepONet (FB-HyDON)を紹介した。
ハイパーネットワークと有限基底関数を利用することで、FB-HyDONは既存の物理インフォームド演算子学習法に関連するトレーニング制限を効果的に緩和する。
論文 参考訳(メタデータ) (2024-09-13T21:41:59Z) - Separable DeepONet: Breaking the Curse of Dimensionality in Physics-Informed Machine Learning [0.0]
ラベル付きデータセットがない場合、PDE残留損失を利用して物理系を学習する。
この手法は、主に次元の呪いによる重要な計算課題に直面するが、計算コストは、より詳細な離散化とともに指数関数的に増加する。
本稿では,これらの課題に対処し,高次元PDEのスケーラビリティを向上させるために,分離可能なDeepONetフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-07-21T16:33:56Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Learning in latent spaces improves the predictive accuracy of deep
neural operators [0.0]
L-DeepONetは標準のDeepONetの拡張であり、高次元PDE入力の潜在表現と適切なオートエンコーダで識別される出力関数を利用する。
L-DeepONetは時間依存PDEの精度と計算効率の両面で標準手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-15T17:13:09Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Learning the solution operator of parametric partial differential
equations with physics-informed DeepOnets [0.0]
ディープ作用素ネットワーク(DeepONets)は、無限次元バナッハ空間間の非線形作用素を近似する実証能力によって注目されている。
DeepOnetモデルの出力をバイアスする効果的な正規化メカニズムを導入し、物理整合性を確保する新しいモデルクラスを提案する。
我々は,このシンプルかつ極めて効果的な拡張が,DeepOnetsの予測精度を大幅に向上するだけでなく,大規模なトレーニングデータセットの必要性を大幅に低減できることを示した。
論文 参考訳(メタデータ) (2021-03-19T18:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。