論文の概要: Spatio-spectral graph neural operator for solving computational mechanics problems on irregular domain and unstructured grid
- arxiv url: http://arxiv.org/abs/2409.00604v1
- Date: Sun, 1 Sep 2024 03:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:27:04.007020
- Title: Spatio-spectral graph neural operator for solving computational mechanics problems on irregular domain and unstructured grid
- Title(参考訳): 不規則領域と非構造格子上の計算力学問題の解法のための時空間グラフニューラル演算子
- Authors: Subhankar Sarkar, Souvik Chakraborty,
- Abstract要約: 本稿では空間GNNとスペクトルGNNを効果的に統合した空間スペクトルグラフニューラル演算子(Sp$2$GNO)を提案する。
このフレームワークは個々のメソッドの制限を緩和し、任意の測地をまたいだ解演算子の学習を可能にする。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scientific machine learning has seen significant progress with the emergence of operator learning. However, existing methods encounter difficulties when applied to problems on unstructured grids and irregular domains. Spatial graph neural networks utilize local convolution in a neighborhood to potentially address these challenges, yet they often suffer from issues such as over-smoothing and over-squashing in deep architectures. Conversely, spectral graph neural networks leverage global convolution to capture extensive features and long-range dependencies in domain graphs, albeit at a high computational cost due to Eigenvalue decomposition. In this paper, we introduce a novel approach, referred to as Spatio-Spectral Graph Neural Operator (Sp$^2$GNO) that integrates spatial and spectral GNNs effectively. This framework mitigates the limitations of individual methods and enables the learning of solution operators across arbitrary geometries, thus catering to a wide range of real-world problems. Sp$^2$GNO demonstrates exceptional performance in solving both time-dependent and time-independent partial differential equations on regular and irregular domains. Our approach is validated through comprehensive benchmarks and practical applications drawn from computational mechanics and scientific computing literature.
- Abstract(参考訳): 科学的な機械学習は、オペレーターラーニングの出現によって大きな進歩を遂げた。
しかし、非構造格子や不規則領域上の問題に適用した場合、既存の手法では困難に遭遇する。
空間グラフニューラルネットワークは、近隣の局所的な畳み込みを利用してこれらの課題に対処するが、しばしば過度なスムーシングや深いアーキテクチャの過度な監視といった問題に悩まされる。
逆に、スペクトルグラフニューラルネットワークは、大域的畳み込みを利用して、固有値分解による計算コストが高いにもかかわらず、ドメイングラフの広範な特徴と長距離依存性をキャプチャする。
本稿では,空間GNNとスペクトルGNNを効果的に統合する新しい手法であるSpatio-Spectral Graph Neural Operator(Sp$^2$GNO)を提案する。
このフレームワークは個々のメソッドの制限を緩和し、任意のジオメトリをまたいだ解演算子の学習を可能にする。
Sp$2$GNOは、正則および不規則領域上の時間依存偏微分方程式と時間依存偏微分方程式の両方を解く際、例外的な性能を示す。
本手法は,計算力学と科学計算の文献から得られた総合的なベンチマークと実践的応用を通じて検証される。
関連論文リスト
- On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
テンポラルグラフ学習(TGL)は、様々な現実世界のアプリケーションにまたがる一般的なテクニックとなっている。
本稿では,異なるTGLアルゴリズムの一般化能力について検討する。
一般化誤差が小さく、全体的な性能が向上し、モデルの複雑さが低下する単純化されたTGLネットワークを提案する。
論文 参考訳(メタデータ) (2024-02-26T08:22:22Z) - A Novel Differentiable Loss Function for Unsupervised Graph Neural
Networks in Graph Partitioning [5.22145960878624]
グラフ分割問題はNPハードプロブレムとして認識される。
グラフ分割問題を解決するために,教師なしグラフニューラルネットワークを用いた新しいパイプラインを導入する。
我々は、現代の最先端技術に対する我々の方法論を厳格に評価し、メトリクス(カットとバランス)に重点を置いています。
論文 参考訳(メタデータ) (2023-12-11T23:03:17Z) - Operator Learning with Neural Fields: Tackling PDEs on General
Geometries [15.65577053925333]
偏微分方程式を解くための機械学習アプローチは、関数空間間の学習写像を必要とする。
新しいコーラル法は、いくつかの一般的な制約に基づいてPDEのための座標ベースのネットワークを利用する。
論文 参考訳(メタデータ) (2023-06-12T17:52:39Z) - GNN-based physics solver for time-independent PDEs [1.7616042687330642]
時間に依存しない問題は、正確な予測を得るために、計算領域全体にわたる情報の長距離交換を必要とするという課題を生じさせる。
この課題を克服するために、Edge Augmented GNNとMulti-GNNの2つのグラフニューラルネットワーク(GNN)を提案する。
両ネットワークは,時間非依存の固体力学問題に適用した場合,ベースライン法よりも(1.5~2の係数で)有意に優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2023-03-28T02:04:43Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Tensor Networks for Multi-Modal Non-Euclidean Data [24.50116388903113]
本稿では,グラフ,テンソル,ニューラルネットワークの望ましい特性を物理的に有意義でコンパクトな方法で活用する,新しいマルチグラフネットワーク(mgtn)フレームワークを提案する。
これによりMGTNは不規則なデータソースのローカル情報をパラメータの複雑さを大幅に減らすことができる。
MGTNフレームワークの利点、特にテンソルネットワークの固有の低ランク正規化特性による過度な適合を回避する能力が示されている。
論文 参考訳(メタデータ) (2021-03-27T21:33:46Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。