論文の概要: On the Need for a Statistical Foundation in Scenario-Based Testing of Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2505.02274v1
- Date: Sun, 04 May 2025 22:06:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.52306
- Title: On the Need for a Statistical Foundation in Scenario-Based Testing of Autonomous Vehicles
- Title(参考訳): シナリオベーステストにおける統計的基盤の必要性について
- Authors: Xingyu Zhao, Robab Aghazadeh-Chakherlou, Chih-Hong Cheng, Peter Popov, Lorenzo Strigini,
- Abstract要約: シナリオベースのテストもマイルベースのテストも、どちらよりも優れていないことを示す。
リスク推定フィデリティ(REF, Risk Estimation Fidelity)は, 合成および実世界のテスト結果のアライメントを認証するための新しい指標である。
- 参考スコア(独自算出の注目度): 4.342427756164555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scenario-based testing has emerged as a common method for autonomous vehicles (AVs) safety, offering a more efficient alternative to mile-based testing by focusing on high-risk scenarios. However, fundamental questions persist regarding its stopping rules, residual risk estimation, debug effectiveness, and the impact of simulation fidelity on safety claims. This paper argues that a rigorous statistical foundation is essential to address these challenges and enable rigorous safety assurance. By drawing parallels between AV testing and traditional software testing methodologies, we identify shared research gaps and reusable solutions. We propose proof-of-concept models to quantify the probability of failure per scenario (pfs) and evaluate testing effectiveness under varying conditions. Our analysis reveals that neither scenario-based nor mile-based testing universally outperforms the other. Furthermore, we introduce Risk Estimation Fidelity (REF), a novel metric to certify the alignment of synthetic and real-world testing outcomes, ensuring simulation-based safety claims are statistically defensible.
- Abstract(参考訳): シナリオベースのテストは、自動運転車(AV)の安全性の一般的な方法として登場し、リスクの高いシナリオに焦点を当てたマイルベースのテストに、より効率的な代替手段を提供する。
しかしながら、その停止規則、残留リスク推定、デバッグの有効性、安全性の主張に対するシミュレーション忠実度の影響に関する根本的な疑問が続いている。
本稿では、これらの課題に対処し、厳密な安全保証を実現するために、厳密な統計基盤が不可欠であると主張している。
AVテストと従来のソフトウェアテスト方法論の類似性を引き出すことで、共有された研究ギャップと再利用可能なソリューションを特定します。
本稿では,シナリオ毎の失敗確率(pfs)を定量化し,異なる条件下でのテストの有効性を評価するための概念実証モデルを提案する。
分析の結果,シナリオベースでもマイルベースのテストでも,どちらよりも優れていないことが明らかとなった。
さらに, リスク推定フィデリティ(REF, Risk Estimation Fidelity, リスク推定フィデリティ, リスク推定フィデリティ, リスク推定フィデリティ, リスク推定フィデリティ, リスク推定フィデリティ, リスク推定フィデリティ, リスク推定フィデリティ, リスク推定フィデリティ)を導入する。
関連論文リスト
- Few-Shot Scenario Testing for Autonomous Vehicles Based on Neighborhood Coverage and Similarity [8.97909097472183]
大規模展開の前には、自律走行車(AV)の安全性能の試験と評価が不可欠である。
特定のAVに対して許容されるテストシナリオの数は、テスト予算と時間に対する厳格な制約によって著しく制限されています。
フェーショットテスト(FST)問題が初めてこの問題を定式化し、この問題に対処するための体系的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T04:47:14Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Adaptive Failure Search Using Critical States from Domain Experts [9.93890332477992]
フェールサーチは、シミュレーションまたは実世界のテストにおいて、かなりの走行距離をロギングすることで行うことができる。
ASTはマルコフ決定プロセスとして失敗探索の問題を提起する手法である。
ASTフレームワークにクリティカルステートを組み込むことで,安全性違反の増大を伴う障害シナリオが生成されることを示す。
論文 参考訳(メタデータ) (2023-04-01T18:14:41Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Towards Safe Policy Improvement for Non-Stationary MDPs [48.9966576179679]
多くの実世界の利害問題は非定常性を示し、利害関係が高ければ、偽の定常性仮定に関連するコストは受け入れがたい。
我々は、スムーズに変化する非定常的な意思決定問題に対して、高い信頼性で安全性を確保するための第一歩を踏み出します。
提案手法は,時系列解析を用いたモデルフリー強化学習の合成により,セルドンアルゴリズムと呼ばれる安全なアルゴリズムを拡張した。
論文 参考訳(メタデータ) (2020-10-23T20:13:51Z) - Multimodal Safety-Critical Scenarios Generation for Decision-Making
Algorithms Evaluation [23.43175124406634]
既存のニューラルネットワークベースの自律システムは、敵の攻撃に対して脆弱であることが示されている。
意思決定アルゴリズムの評価のためのフローベースマルチモーダル安全クリティカルシナリオジェネレータを提案する。
生成したトラフィックシナリオを用いて6つの強化学習アルゴリズムを評価し,その堅牢性に関する実証的な結論を提供する。
論文 参考訳(メタデータ) (2020-09-16T15:16:43Z) - Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems [34.945482759378734]
シミュレーションの安全性評価には確率論的アプローチを用いており、危険事象の確率を計算することに関心がある。
探索, 利用, 最適化技術を組み合わせて, 故障モードを見つけ, 発生率を推定する新しいレアイベントシミュレーション手法を開発した。
論文 参考訳(メタデータ) (2020-08-24T17:46:27Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
自動運転車の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているようだ。
既存の標準は、検証が要求をカバーするテストケースのセットだけを必要とする決定論的プロセスに焦点を当てています。
本稿では, 自動生成テストケースを最悪のシナリオに偏り付け, システムの挙動の統計的特性を計算するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-04T04:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。