GFlowNets for Active Learning Based Resource Allocation in Next Generation Wireless Networks
- URL: http://arxiv.org/abs/2505.05224v1
- Date: Thu, 08 May 2025 13:16:40 GMT
- Title: GFlowNets for Active Learning Based Resource Allocation in Next Generation Wireless Networks
- Authors: Charbel Bou Chaaya, Mehdi Bennis,
- Abstract summary: We consider the radio resource allocation problem in a wireless system with various integrated functionalities, such as communication, sensing and computing.<n>We propose a novel active learning framework where resource allocation patterns are drawn sequentially, evaluated in the environment, and then used to iteratively update a surrogate model of the environment.<n>GFlowNet generates diverse and high return resource management designs that update the surrogate model and swiftly discover suitable solutions.
- Score: 34.19521408051132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we consider the radio resource allocation problem in a wireless system with various integrated functionalities, such as communication, sensing and computing. We design suitable resource management techniques that can simultaneously cater to those heterogeneous requirements, and scale appropriately with the high-dimensional and discrete nature of the problem. We propose a novel active learning framework where resource allocation patterns are drawn sequentially, evaluated in the environment, and then used to iteratively update a surrogate model of the environment. Our method leverages a generative flow network (GFlowNet) to sample favorable solutions, as such models are trained to generate compositional objects proportionally to their training reward, hence providing an appropriate coverage of its modes. As such, GFlowNet generates diverse and high return resource management designs that update the surrogate model and swiftly discover suitable solutions. We provide simulation results showing that our method can allocate radio resources achieving 20% performance gains against benchmarks, while requiring less than half of the number of acquisition rounds.
Related papers
- Generative Diffusion Models for Resource Allocation in Wireless Networks [77.36145730415045]
We train a policy to imitate an expert and generate new samples from the optimal distribution.<n>We achieve near-optimal performance through sequential execution of the generated samples.<n>We present numerical results in a case study of power control in multi-user interference networks.
arXiv Detail & Related papers (2025-04-28T21:44:31Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Semi-Supervised Learning Approach for Efficient Resource Allocation with Network Slicing in O-RAN [5.1435595246496595]
This paper introduces an innovative approach to the resource allocation problem.
It aims to coordinate multiple independent x-applications (xAPPs) for network slicing and resource allocation in the Open Radio Access Network (O-RAN)
arXiv Detail & Related papers (2024-01-16T22:23:27Z) - Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks (GFlowNets) are a new family of probabilistic samplers where an agent learns a policy for generating complex structure through a series of decision-making steps.
In this work, we adopt a distributional paradigm for GFlowNets, turning each flow function into a distribution, thus providing more informative learning signals during training.
Our proposed textitquantile matching GFlowNet learning algorithm is able to learn a risk-sensitive policy, an essential component for handling scenarios with risk uncertainty.
arXiv Detail & Related papers (2023-02-11T22:06:17Z) - Dynamic Channel Access via Meta-Reinforcement Learning [0.8223798883838329]
We propose a meta-DRL framework that incorporates the method of Model-Agnostic Meta-Learning (MAML)
We show that only a few gradient descents are required for adapting to different tasks drawn from the same distribution.
arXiv Detail & Related papers (2021-12-24T15:04:43Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
We design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs)
We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method.
arXiv Detail & Related papers (2020-11-05T03:38:36Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.