論文の概要: Out-of-Sample Embedding with Proximity Data: Projection versus Restricted Reconstruction
- arxiv url: http://arxiv.org/abs/2505.06756v1
- Date: Sat, 10 May 2025 21:11:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.02743
- Title: Out-of-Sample Embedding with Proximity Data: Projection versus Restricted Reconstruction
- Title(参考訳): 近視差データを用いた外陰影埋め込み : 投射対制限再建
- Authors: Michael W. Trosset, Kaiyi Tan, Minh Tang, Carey E. Priebe,
- Abstract要約: ベクトル図形に点を加える」という問題は1968年にJ.C. Gowerによって初めて研究された。
様々な状況は、投影または制限された再建を保証できる。
- 参考スコア(独自算出の注目度): 12.260736438853604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of using proximity (similarity or dissimilarity) data for the purpose of "adding a point to a vector diagram" was first studied by J.C. Gower in 1968. Since then, a number of methods -- mostly kernel methods -- have been proposed for solving what has come to be called the problem of *out-of-sample embedding*. We survey the various kernel methods that we have encountered and show that each can be derived from one or the other of two competing strategies: *projection* or *restricted reconstruction*. Projection can be analogized to a well-known formula for adding a point to a principal component analysis. Restricted reconstruction poses a different challenge: how to best approximate redoing the entire multivariate analysis while holding fixed the vector diagram that was previously obtained. This strategy results in a nonlinear optimization problem that can be simplified to a unidimensional search. Various circumstances may warrant either projection or restricted reconstruction.
- Abstract(参考訳): 1968年、J.C. Gower によって「点をベクトル図に追加する」目的で近接(類似性または相似性)データを使用する問題が初めて研究された。
それ以来、*out-of-sample Embedding*と呼ばれる問題を解決するために、多くのメソッド(主にカーネルメソッド)が提案されている。
我々は、我々が遭遇した様々なカーネルメソッドを調査し、それぞれが2つの競合する戦略の1つまたはもう1つから導出できることを示します。
射影は、主成分分析に点を加えるためのよく知られた公式に類似することができる。
制限された再構成は、以前得られたベクトル図を固定しながら、多変量解析全体を最適に近似する方法という、異なる課題を生んでいる。
この戦略は、一次元探索に単純化できる非線形最適化問題をもたらす。
様々な状況は、投影または制限された再建を保証できる。
関連論文リスト
- The Differentiable Feasibility Pump [49.55771920271201]
本稿では,従来の実現可能性ポンプとその追随点の多くを,特定のパラメータを持つ勾配差アルゴリズムとみなすことができることを示す。
この再解釈の中心的な側面は、伝統的なアルゴリズムがそのコストに関して線形緩和の解を区別することを観察することである。
論文 参考訳(メタデータ) (2024-11-05T22:26:51Z) - Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
乱れのないデータから歪んだ表現を学習することは、機械学習における根本的な課題である。
本稿では,2次最適輸送に基づく非交叉表現学習手法を提案する。
提案手法の有効性を4つの標準ベンチマークで示す。
論文 参考訳(メタデータ) (2024-07-10T16:51:32Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - $\ell_1$-norm constrained multi-block sparse canonical correlation
analysis via proximal gradient descent [0.0]
マルチブロックCCA問題を解くための近似勾配降下アルゴリズムを提案する。
得られた推定値は、適切な仮定の下では、レート最適であることが示される。
また,複数の固有ベクトルを逐次推定するデフレ手順についても述べる。
論文 参考訳(メタデータ) (2022-01-14T03:35:01Z) - Probabilistic methods for approximate archetypal analysis [8.829245587252435]
Archetypal analysisは、探索データ分析のための教師なし学習手法である。
データの次元と表現の基数を低減するために,2つの前処理手法を導入する。
提案手法を応用して, 適度に大規模なデータセットを要約することで, 結果の有用性を実証する。
論文 参考訳(メタデータ) (2021-08-12T14:27:11Z) - Analysis of Truncated Orthogonal Iteration for Sparse Eigenvector
Problems [78.95866278697777]
本研究では,多元的固有ベクトルを分散制約で同時に計算するTruncated Orthogonal Iterationの2つの変種を提案する。
次に,我々のアルゴリズムを適用して,幅広いテストデータセットに対するスパース原理成分分析問題を解く。
論文 参考訳(メタデータ) (2021-03-24T23:11:32Z) - Efficient Algorithms for Multidimensional Segmented Regression [42.046881924063044]
多次元回帰を用いた固定設計の基本問題について検討する。
我々は任意の固定次元におけるこの問題に対する最初のサンプルと計算効率のよいアルゴリズムを提供する。
提案アルゴリズムは,多次元的条件下では新規な,単純なマージ反復手法に依存している。
論文 参考訳(メタデータ) (2020-03-24T19:39:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。