論文の概要: Interpreting Graph Inference with Skyline Explanations
- arxiv url: http://arxiv.org/abs/2505.07635v2
- Date: Thu, 03 Jul 2025 13:40:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-05 00:08:20.874758
- Title: Interpreting Graph Inference with Skyline Explanations
- Title(参考訳): スカイライン説明によるグラフ推論の解釈
- Authors: Dazhuo Qiu, Haolai Che, Arijit Khan, Yinghui Wu,
- Abstract要約: グラフニューラルネットワーク(GNN)のようなグラフ機械学習モデルに対して、推論クエリが日常的に発行されている。
本稿では,ユーザ興味の複数の説明可能性尺度を同時に最適化することにより,GNNの出力を解釈する新しいパラダイムであるスカイラインの説明を紹介する。
- 参考スコア(独自算出の注目度): 10.8113772324693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inference queries have been routinely issued to graph machine learning models such as graph neural networks (GNNs) for various network analytical tasks. Nevertheless, GNNs outputs are often hard to interpret comprehensively. Existing methods typically compromise to individual pre-defined explainability measures (such as fidelity), which often leads to biased, ``one-sided'' interpretations. This paper introduces skyline explanation, a new paradigm that interprets GNN output by simultaneously optimizing multiple explainability measures of users' interests. (1) We propose skyline explanations as a Pareto set of explanatory subgraphs that dominate others over multiple explanatory measures. We formulate skyline explanation as a multi-criteria optimization problem, and establish its hardness results. (2) We design efficient algorithms with an onion-peeling approach, which strategically prioritizes nodes and removes unpromising edges to incrementally assemble skyline explanations. (3) We also develop an algorithm to diversify the skyline explanations to enrich the comprehensive interpretation. (4) We introduce efficient parallel algorithms with load-balancing strategies to scale skyline explanation for large-scale GNN-based inference. Using real-world and synthetic graphs, we experimentally verify our algorithms' effectiveness and scalability.
- Abstract(参考訳): 様々なネットワーク分析タスクのためのグラフニューラルネットワーク(GNN)のようなグラフ機械学習モデルに対して、推論クエリが日常的に発行されている。
しかしながら、GNNのアウトプットは包括的解釈が難しいことが多い。
既存の方法は通常、個々の事前定義された説明可能性尺度(フィデリティなど)に妥協する。
本稿では,ユーザの関心事に対する複数の説明可能性尺度を同時に最適化することにより,GNNの出力を解釈する新しいパラダイムであるスカイラインの説明を紹介する。
1) 複数の説明手段において他者を支配する説明文の集合として,スカイラインの説明を提案する。
マルチ基準最適化問題としてスカイラインの説明を定式化し、その硬度結果を確立する。
2) ノードを戦略的に優先順位付けし, 未提案のエッジを除去し, スカイラインの説明を漸進的に組み立てる, マネギペリング手法による効率的なアルゴリズムを設計する。
(3)スカイラインの説明を多様化し,包括的解釈を充実させるアルゴリズムも開発している。
(4) 大規模GNN推論のためのスカイライン説明をスケールするために,負荷分散戦略を用いた効率的な並列アルゴリズムを導入する。
実世界のグラフと合成グラフを用いて、アルゴリズムの有効性とスケーラビリティを実験的に検証する。
関連論文リスト
- Explainable Graph Neural Networks Under Fire [69.15708723429307]
グラフニューラルネットワーク(GNN)は通常、複雑な計算挙動とグラフの抽象的性質のために解釈性に欠ける。
ほとんどのGNN説明法は、ポストホックな方法で動作し、重要なエッジと/またはノードの小さなサブセットの形で説明を提供する。
本稿では,これらの説明が信頼できないことを実証する。GNNの一般的な説明手法は,敵対的摂動に強い影響を受けやすいことが判明した。
論文 参考訳(メタデータ) (2024-06-10T16:09:16Z) - View-based Explanations for Graph Neural Networks [27.19300566616961]
本稿では,表現のためのグラフビューを生成する新しいパラダイムであるGVEXを提案する。
この戦略は近似比が1/2であることを示す。
第2のアルゴリズムは、インプットノードストリームへの単一パスをバッチで実行し、説明ビューを漸進的に維持する。
論文 参考訳(メタデータ) (2024-01-04T06:20:24Z) - Generative Explanations for Graph Neural Network: Methods and
Evaluations [16.67839967139831]
グラフニューラルネットワーク(GNN)は、様々なグラフ関連タスクにおいて最先端のパフォーマンスを達成する。
GNNのブラックボックスの性質は、解釈可能性と信頼性を制限している。
GNNの意思決定ロジックを明らかにするために,多くの説明可能性手法が提案されている。
論文 参考訳(メタデータ) (2023-11-09T22:07:15Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Faithful Explanations for Deep Graph Models [44.3056871040946]
本稿では,グラフニューラルネットワーク(GNN)の忠実な説明について述べる。
これは、特徴属性やサブグラフ説明を含む既存の説明方法に適用される。
第3に,元のGNNへの忠実度を確実に最大化する新しい説明法である,畳み込みコア(KEC)を用いたEmphk-hop Explanationを導入する。
論文 参考訳(メタデータ) (2022-05-24T07:18:56Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
グラフニューラルネットワーク(GNN)の探索には説明可能性が不可欠である
我々は強化学習エージェントReinforced Causal Explainer (RC-Explainer)を提案する。
RC-Explainerは忠実で簡潔な説明を生成し、グラフを見えなくするより優れたパワーを持つ。
論文 参考訳(メタデータ) (2022-04-23T09:13:25Z) - Task-Agnostic Graph Explanations [50.17442349253348]
グラフニューラルネットワーク(GNN)は、グラフ構造化データをエンコードする強力なツールとして登場した。
既存の学習ベースのGNN説明手法は、訓練においてタスク固有である。
本稿では、下流タスクの知識のない自己監督下で訓練されたタスク非依存のGNN Explainer(TAGE)を提案する。
論文 参考訳(メタデータ) (2022-02-16T21:11:47Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
本稿では,補助的説明の集約によるノード分類タスクの説明品質の向上手法を提案する。
SEENを適用するにはグラフを変更する必要はなく、さまざまな説明可能性のテクニックで使用することができる。
与えられたグラフからモチーフ参加ノードをマッチングする実験では、説明精度が最大12.71%向上した。
論文 参考訳(メタデータ) (2021-06-16T03:04:46Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。