論文の概要: Learning Nonlinear Dynamics in Physical Modelling Synthesis using Neural Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2505.10511v1
- Date: Thu, 15 May 2025 17:17:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.434808
- Title: Learning Nonlinear Dynamics in Physical Modelling Synthesis using Neural Ordinary Differential Equations
- Title(参考訳): ニューラル正規微分方程式を用いた物理モデリング合成における非線形ダイナミクスの学習
- Authors: Victor Zheleznov, Stefan Bilbao, Alec Wright, Simon King,
- Abstract要約: モード分解は、通常の微分方程式の結合非線形系につながる。
応用機械学習手法の最近の研究は、データからラップされた動的システムを自動的にモデル化するために使われてきた。
本稿では,システムの非線形ダイナミクスを再現するために,モデルをトレーニングできることを示す。
- 参考スコア(独自算出の注目度): 13.755383470312001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modal synthesis methods are a long-standing approach for modelling distributed musical systems. In some cases extensions are possible in order to handle geometric nonlinearities. One such case is the high-amplitude vibration of a string, where geometric nonlinear effects lead to perceptually important effects including pitch glides and a dependence of brightness on striking amplitude. A modal decomposition leads to a coupled nonlinear system of ordinary differential equations. Recent work in applied machine learning approaches (in particular neural ordinary differential equations) has been used to model lumped dynamic systems such as electronic circuits automatically from data. In this work, we examine how modal decomposition can be combined with neural ordinary differential equations for modelling distributed musical systems. The proposed model leverages the analytical solution for linear vibration of system's modes and employs a neural network to account for nonlinear dynamic behaviour. Physical parameters of a system remain easily accessible after the training without the need for a parameter encoder in the network architecture. As an initial proof of concept, we generate synthetic data for a nonlinear transverse string and show that the model can be trained to reproduce the nonlinear dynamics of the system. Sound examples are presented.
- Abstract(参考訳): モーダル合成法は、分散音楽システムのモデリングにおける長年のアプローチである。
幾らかの場合、幾何学的非線形性を扱うために拡張が可能である。
そのような場合の1つは弦の高振幅振動であり、幾何学的非線形効果はピッチグライドや輝度の振幅依存性など知覚的に重要な効果をもたらす。
モード分解は、通常の微分方程式の結合非線形系につながる。
応用機械学習手法(特にニューラル常微分方程式)の最近の研究は、データから電子回路などのラッピング力学系をモデル化するために使われている。
本研究では,分散音楽システムのモデル化において,モーダル分解とニューラル常微分方程式をどのように組み合わせるかを検討する。
提案モデルでは, システムのモードの線形振動に対する解析解を利用し, 非線形動的挙動を考慮に入れたニューラルネットワークを用いる。
システムの物理的パラメータは、ネットワークアーキテクチャでパラメータエンコーダを必要とせずに、トレーニング後に容易にアクセス可能である。
最初の概念実証として,非線形横文字列の合成データを生成し,システムの非線形力学を再現するためにモデルを訓練できることを示す。
例を挙げる。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
時間変化線形状態空間モデルは、ニューラルネットワークの数学的解釈可能な表現を得るための強力なツールである。
潜在変数推定のための既存の手法は、動的ノイズやシステムの非線形性に対して堅牢ではない。
本稿では,動的雑音に対するロバスト性を改善するために,分解モデルにおける潜在変数推定に対する確率的アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-29T18:58:39Z) - Koopman-based Deep Learning for Nonlinear System Estimation [1.3791394805787949]
複素非線形系の有意な有限次元表現を抽出するために、クープマン作用素理論に基づく新しいデータ駆動線形推定器を提案する。
我々の推定器は推定された非線形系の微分同相変換にも適応しており、再学習せずに最適な状態推定を計算できる。
論文 参考訳(メタデータ) (2024-05-01T16:49:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Generalized Quadratic Embeddings for Nonlinear Dynamics using Deep
Learning [11.339982217541822]
本稿では非線形システムの力学をモデル化するためのデータ駆動手法を提案する。
本研究では,昇降原理に着想を得た2次系を共通構造として用いることを提案する。
論文 参考訳(メタデータ) (2022-11-01T10:03:34Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
このマップは、重みがモデル化されたシステムをエンコードする人工知能ニューラルネットワークとして構築されている。
ローレンツ系、ロースラー系およびヒンドマール・ロースニューロンを考察する。
誘引子、パワースペクトル、分岐図、リャプノフ指数の視覚像に高い類似性が観察される。
論文 参考訳(メタデータ) (2021-03-06T16:02:41Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
有限非線形力学系を無限線型力学系(埋め込み)にマッピングする方法を述べる。
次に、有限線型系 (truncation) による結果の無限線型系を近似するアプローチを検討する。
論文 参考訳(メタデータ) (2020-12-12T00:01:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。