論文の概要: MONAQ: Multi-Objective Neural Architecture Querying for Time-Series Analysis on Resource-Constrained Devices
- arxiv url: http://arxiv.org/abs/2505.10607v1
- Date: Thu, 15 May 2025 16:35:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:13.287935
- Title: MONAQ: Multi-Objective Neural Architecture Querying for Time-Series Analysis on Resource-Constrained Devices
- Title(参考訳): MONAQ:リソース制約デバイス上の時系列解析のための多目的ニューラルネットワーククエリ
- Authors: Patara Trirat, Jae-Gil Lee,
- Abstract要約: 我々は,NASを多目的ニューラルアーキテクチャクエリータスクに再構成する新しいフレームワークMONAQを提案する。
MonAQはマルチモーダルな時系列入力とハードウェア制約を処理するマルチモーダルクエリ生成機能を備えている。
15のデータセットの実験では、MONAQで発見されたモデルは、手作りのモデルとNASベースラインの両方を上回っている。
- 参考スコア(独自算出の注目度): 16.639965422376303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing use of smartphones and IoT devices necessitates efficient time-series analysis on resource-constrained hardware, which is critical for sensing applications such as human activity recognition and air quality prediction. Recent efforts in hardware-aware neural architecture search (NAS) automate architecture discovery for specific platforms; however, none focus on general time-series analysis with edge deployment. Leveraging the problem-solving and reasoning capabilities of large language models (LLM), we propose MONAQ, a novel framework that reformulates NAS into Multi-Objective Neural Architecture Querying tasks. MONAQ is equipped with multimodal query generation for processing multimodal time-series inputs and hardware constraints, alongside an LLM agent-based multi-objective search to achieve deployment-ready models via code generation. By integrating numerical data, time-series images, and textual descriptions, MONAQ improves an LLM's understanding of time-series data. Experiments on fifteen datasets demonstrate that MONAQ-discovered models outperform both handcrafted models and NAS baselines while being more efficient.
- Abstract(参考訳): スマートフォンやIoTデバイスの利用の増加は、リソース制約のあるハードウェア上での効率的な時系列分析を必要とする。
ハードウェア対応ニューラルアーキテクチャサーチ(NAS)の最近の取り組みは、特定のプラットフォームにおけるアーキテクチャ発見を自動化するが、エッジデプロイメントによる一般的な時系列分析には焦点を当てていない。
大規模言語モデル(LLM)の問題解決と推論機能を活用し,NASを多目的ニューラルアーキテクチャクエリータスクに変換する新しいフレームワークであるMONAQを提案する。
MONAQは、マルチモーダルな時系列入力とハードウェア制約を処理するためのマルチモーダルクエリ生成と、LLMエージェントベースのマルチオブジェクト検索を備え、コード生成を通じてデプロイ可能なモデルを実現する。
数値データ、時系列画像、テキスト記述を統合することで、MONAQはLCMの時系列データの理解を改善する。
15のデータセットの実験では、MONAQで発見されたモデルは、より効率的でありながら、手作りのモデルとNASベースラインの両方より優れていることが示されている。
関連論文リスト
- LEMUR Neural Network Dataset: Towards Seamless AutoML [34.04248949660201]
LEMURは、ニューラルネットワークモデルのオープンソースデータセットであり、多様なアーキテクチャのためのよく構造化されたコードである。
LEMURは主に、機械学習タスクを自動化するために、大規模な言語モデルの微調整を可能にするように設計されている。
LEMURはMITライセンス下でオープンソースプロジェクトとしてリリースされ、論文が受理される。
論文 参考訳(メタデータ) (2025-04-14T09:08:00Z) - MI-DETR: An Object Detection Model with Multi-time Inquiries Mechanism [67.56918651825056]
並列マルチ時間問い合わせ(MI)機構を備えた新しいデコーダアーキテクチャを提案する。
我々のMIベースモデルであるMI-DETRはCOCOベンチマークで既存のDETRライクなモデルよりも優れています。
診断と可視化の一連の実験は、MIの有効性、合理性、解釈可能性を示している。
論文 参考訳(メタデータ) (2025-03-03T12:19:06Z) - Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement [55.2439260314328]
Time Series Multi-Task Question Answering (Time-MQA)は、複数の時系列タスクにわたる自然言語クエリを可能にする統合フレームワークである。
Time-MQAの中心はTSQAデータセットである。
論文 参考訳(メタデータ) (2025-02-26T13:47:13Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NASが登場し、データセット依存からタスク依存への探索プロセスを一般化した。
本稿では多目的拡散プロセスを通じて拡散NAGを拡張するPOMONAGを紹介する。
結果は、NAS201とMobileNetV3の2つの検索スペースで検証され、15の画像分類データセットで評価された。
論文 参考訳(メタデータ) (2024-09-30T16:05:29Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
本稿では、異なるハードウェア環境と複数の分類タスクを対象とした逐次モデルベースNASアルゴリズムの第3版について述べる。
提案手法は,異なるタスクに適応するフレキシブルな構造とデータ処理パイプラインを維持しながら,大規模な検索空間内で競合するアーキテクチャを見つけることができる。
画像と時系列の分類データセットで実施された実験は、POPNASv3が多種多様な演算子を探索し、異なるシナリオで提供されるデータの種類に適した最適なアーキテクチャに収束できることを示す。
論文 参考訳(メタデータ) (2022-12-13T17:14:14Z) - Merlion: A Machine Learning Library for Time Series [73.46386700728577]
Merlionは時系列のためのオープンソースの機械学習ライブラリである。
モデルの統一インターフェースと、異常検出と予測のためのデータセットを備えている。
Merlionはまた、本番環境でのモデルのライブデプロイメントと再トレーニングをシミュレートするユニークな評価フレームワークも提供する。
論文 参考訳(メタデータ) (2021-09-20T02:03:43Z) - ISyNet: Convolutional Neural Networks design for AI accelerator [0.0]
現在の最先端アーキテクチャは、モデル複雑さを考慮して、ニューラルアーキテクチャサーチ(NAS)によって発見されている。
本稿では,ニューラルネットワーク探索空間のハードウェア効率の指標として,行列効率測定(MEM),ハードウェア効率の高い演算からなる探索空間,レイテンシを考慮したスケーリング手法を提案する。
我々は、ImageNet上のNPUデバイスの設計アーキテクチャと、下流の分類および検出タスクの一般化能力の利点を示す。
論文 参考訳(メタデータ) (2021-09-04T20:57:05Z) - Generalized Latency Performance Estimation for Once-For-All Neural
Architecture Search [0.0]
特定のハードウェアとNAS検索空間で訓練されたベースモデルを用いた微調整を含む2つの汎用性戦略を紹介します。
ProxylessNASに比べて50%以上低いRMSE損失を達成できる待ち時間予測モデル群を提供する。
論文 参考訳(メタデータ) (2021-01-04T00:48:09Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - NAS-Count: Counting-by-Density with Neural Architecture Search [74.92941571724525]
ニューラルアーキテクチャサーチ(NAS)を用いたカウントモデルの設計を自動化する
エンド・ツー・エンドの検索エンコーダ・デコーダアーキテクチャであるAutomatic Multi-Scale Network(AMSNet)を導入する。
論文 参考訳(メタデータ) (2020-02-29T09:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。