論文の概要: FP64 is All You Need: Rethinking Failure Modes in Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2505.10949v1
- Date: Fri, 16 May 2025 07:38:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:14.280801
- Title: FP64 is All You Need: Rethinking Failure Modes in Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークの障害モードを再考するFP64
- Authors: Chenhui Xu, Dancheng Liu, Amir Nassereldine, Jinjun Xiong,
- Abstract要約: PINNは、PDE残留損失が収束する障害モードを示し、解誤差は大きい。
標準のFP32では、LBFGSはその収束試験を早めに満足し、急激な故障フェーズでネットワークを凍結することを示した。
この結果から,厳密な算術精度がニューラルネットワークを用いた信頼性PDE解決の鍵であることが示唆された。
- 参考スコア(独自算出の注目度): 18.678742816040856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics Informed Neural Networks (PINNs) often exhibit failure modes in which the PDE residual loss converges while the solution error stays large, a phenomenon traditionally blamed on local optima separated from the true solution by steep loss barriers. We challenge this understanding by demonstrate that the real culprit is insufficient arithmetic precision: with standard FP32, the LBFGS optimizer prematurely satisfies its convergence test, freezing the network in a spurious failure phase. Simply upgrading to FP64 rescues optimization, enabling vanilla PINNs to solve PDEs without any failure modes. These results reframe PINN failure modes as precision induced stalls rather than inescapable local minima and expose a three stage training dynamic unconverged, failure, success whose boundaries shift with numerical precision. Our findings emphasize that rigorous arithmetic precision is the key to dependable PDE solving with neural networks.
- Abstract(参考訳): 物理情報ニューラルネットワーク(PINN)は、しばしばPDE残留損失が収束する障害モードを示すが、解誤差は大きい。
標準的なFP32では、LBFGSオプティマイザは早期に収束試験を満足し、急激な故障フェーズでネットワークを凍結する。
簡単にFP64へのアップグレードによって最適化が可能となり、バニラPINNは障害モードなしでPDEを解決できる。
これらの結果から,PNNの障害モードを,非回避型ローカルミニマではなく高精度誘導型ストールとして再設定し,数値精度で境界がずれる3段階の動的非収束型障害を露呈する。
この結果から,厳密な算術精度がニューラルネットワークを用いた信頼性PDE解決の鍵であることが示唆された。
関連論文リスト
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法において高い期待を得た
以前の研究では、PINNの伝播不良現象が観察された。
本論文は,伝播不良とその根本原因について,初めて公式かつ詳細な研究を行ったものである。
論文 参考訳(メタデータ) (2025-02-02T13:56:38Z) - Enhancing Convergence Speed with Feature-Enforcing Physics-Informed Neural Networks: Utilizing Boundary Conditions as Prior Knowledge for Faster Convergence [0.0]
本研究では,Vanilla Physics-Informed-Neural-Networks(PINN)の高速化学習手法を提案する。
ニューラルネットワークの初期重み付け状態、ドメイン間境界点比、損失重み付け係数という、損失関数の不均衡な3つの要因に対処する。
ニューラルネットワークの構造に第1のトレーニングフェーズで生成された重みを組み込むことで、不均衡因子の影響を中和することがわかった。
論文 参考訳(メタデータ) (2023-08-17T09:10:07Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
双曲型PDEを含む前方および逆問題に対する特徴情報ニューラルネットワーク(CINN)を提案する。
CINNは、通常のMSEデータ適合回帰損失をトレーニングした汎用ディープニューラルネットワークにおいて、PDEの特性を符号化する。
予備的な結果は、CINNがベースラインPINNの精度を改善しつつ、トレーニングの約2倍の速さで非物理的解を回避できることを示している。
論文 参考訳(メタデータ) (2022-12-28T18:38:53Z) - FO-PINNs: A First-Order formulation for Physics Informed Neural Networks [1.8874301050354767]
物理インフォームドニューラルネットワーク(英: Physics-Informed Neural Networks、PINN)は、物理システムの応答をシミュレーションデータなしで学習するディープラーニングニューラルネットワークのクラスである。
PINNは前方および逆問題の解決に有効であるが、パラメータ化システムでは精度が大幅に低下する。
PDE損失関数の1次定式化を用いてトレーニングした1次物理学情報ニューラルネットワーク(FO-PINN)を提案する。
論文 参考訳(メタデータ) (2022-10-25T20:25:33Z) - Failure-informed adaptive sampling for PINNs [5.723850818203907]
物理学インフォームドニューラルネットワーク(PINN)は、幅広い領域でPDEを解決する効果的な手法として登場した。
しかし、最近の研究では、異なるサンプリング手順でPINNの性能が劇的に変化することが示されている。
本稿では,信頼度分析の視点から,故障インフォームドPINNという適応的手法を提案する。
論文 参考訳(メタデータ) (2022-10-01T13:34:41Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
有限精度レベルは、固定精度フォーマットで重みとアクティベーションを定量化する量子ニューラルネットワーク(QNN)を使用して取得される。
提案するFLフレームワークは,ベースラインFLアルゴリズムと比較して,収束までのエネルギー消費量を最大70%削減することができる。
論文 参考訳(メタデータ) (2022-07-19T16:37:24Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。