論文の概要: Enhancing Large Language Models for Detecting Mental Manipulation via Annotation-Free Data Augmentation and Anti-Curriculum Distillation
- arxiv url: http://arxiv.org/abs/2505.15255v3
- Date: Sat, 08 Nov 2025 10:51:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 19:11:14.170518
- Title: Enhancing Large Language Models for Detecting Mental Manipulation via Annotation-Free Data Augmentation and Anti-Curriculum Distillation
- Title(参考訳): 注釈のないデータ拡張と反キュリキュラム蒸留によるメンタルマニピュレーション検出のための大規模言語モデルの構築
- Authors: Yuansheng Gao, Han Bao, Tong Zhang, Bin Li, Jixiang Luo, Ronghao Chen, Zonghui Wang, Wenzhi Chen,
- Abstract要約: MentalMACは、大規模言語モデルのメンタル操作の要素を検出する能力を高める新しいフレームワークである。
MentalMACはF1macを最大25.9%改善し、8.1%の精度で最高性能のベースラインを達成している。
- 参考スコア(独自算出の注目度): 22.661683527383474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mental manipulation is a subtle yet pervasive form of psychological abuse that poses serious threats to mental health. Nevertheless, detecting mental manipulation remains a largely underexplored research problem. The field faces three major challenges: (i) insufficient and hard-to-obtain training data; (ii) the covert nature of mental manipulation, which hinders detection; and (iii) the lack of real-world datasets. To address these challenges, we propose MentalMAC, a novel framework that enhances large language models' ability to detect elements of mental manipulation in multi-turn dialogue. Our approach consists of three key components: EvoSA, an annotation-free data augmentation method based on evolutionary operations and speech act theory; teacher-model-generated multi-task supervision; and progressive task-level anti-curriculum distillation. We then constructed the ReaMent dataset, comprising 5,000 real-world dialogue samples, utilizing MentalMAC-distilled models to aid in human annotation. Vast experiments show that MentalMAC achieves up to 25.9% improvement in F1mac and 8.1% in accuracy over the best-performing baseline, outperforming commercial LLMs such as GPT-4 and Claude-3.5-Sonnet. Warning: This paper contains content that may be offensive to the reader.
- Abstract(参考訳): 精神的な操作は微妙だが広範囲にわたる心理的虐待であり、精神的な健康に深刻な脅威をもたらす。
それでも、精神的な操作を検出することは、ほとんど探索されていない研究課題である。
フィールドには3つの大きな課題があります。
一 不十分で、かつ耐え難い訓練データ
二 検出を妨げる精神的な操作の秘密の性質
(三)現実世界のデータセットの欠如。
これらの課題に対処するために,大規模言語モデルの多ターン対話におけるメンタル操作の要素を検出する能力を高める新しいフレームワークであるMentalMACを提案する。
提案手法は,進化的操作と音声行動理論に基づくアノテーションのないデータ拡張手法であるEvoSA,教師モデル生成型マルチタスク監視,プログレッシブタスクレベルの反カリキュラム蒸留の3つの要素から構成される。
次に,実世界の対話サンプル5,000点からなるReaMentデータセットを構築し,メンタルMACを蒸留したモデルを用いて人間のアノテーションを補助した。
Vast実験によると、MentalMACは最高性能のベースラインよりも25.9%改善し、精度は8.1%向上し、GPT-4やClaude-3.5-Sonnetといった商用LLMよりも優れていた。
警告:本論文は読者に不快な内容を含む。
関連論文リスト
- Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation [19.913806733495488]
命令追従能力を持つ大規模言語モデル(LLM)は、目覚ましい問題解決能力を示している。
従来の手法は、データアノテーションに対する人間の努力に大きく依存している。
命令合成のための革新的なLCM駆動方式であるSelf-Foveateを提案する。
論文 参考訳(メタデータ) (2025-07-31T11:18:42Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
幻覚に対処するための反復モデルレベルのコントラスト学習(Iter-AHMCL)
本稿では,幻覚に対処するイテレーティブモデルレベルのコントラスト学習(Iter-AHMCL)を提案する。
論文 参考訳(メタデータ) (2024-10-16T00:15:40Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
大規模な言語モデル(LLM)は、ダウンストリームタスク間で印象的なパフォーマンスを達成するために、広範囲のラベル付きデータセットとトレーニング計算を必要とすることが多い。
本稿では,LLMが独自ラベルを自動でキュレートし,未知のデータサンプルを選択的に学習する自己学習パラダイムについて検討する。
経験的評価は、複数の被験者にまたがる世代における幻覚の減少に有意な改善を示した。
論文 参考訳(メタデータ) (2024-06-17T07:25:09Z) - MentalManip: A Dataset For Fine-grained Analysis of Mental Manipulation in Conversations [41.661208833153225]
心的操作は対人会話において重要な虐待形態である。
本研究は、4000ドルの注釈付き映画対話からなる、$rm M Small entalM Small anip$という新しいデータセットを紹介する。
このデータセットは、精神的な操作の包括的な分析を可能にし、操作に使用されるテクニックと、被害者がターゲットとする脆弱性の両方をピンポイントする。
論文 参考訳(メタデータ) (2024-05-26T14:27:48Z) - UNDIAL: Self-Distillation with Adjusted Logits for Robust Unlearning in Large Language Models [12.45822383965784]
本稿では,UnDIAL(Unlearning via Self-Distillation on Adjusted Logits)を紹介する。
本手法では, 自己蒸留を利用してロジットを調整し, ターゲットトークンの影響を選択的に低減する。
論文 参考訳(メタデータ) (2024-02-15T16:21:14Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
我々はtextbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL) という効果的なフレームワークを提案する。
MA2CLは、潜伏空間におけるマスクされたエージェント観察を再構築することにより、時間的およびエージェントレベルの予測の両方の学習表現を奨励する。
提案手法は,様々なMARLアルゴリズムの性能とサンプル効率を大幅に向上させ,様々な視覚的,状態的シナリオにおいて,他の手法よりも優れる。
論文 参考訳(メタデータ) (2023-06-03T05:32:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。