Modular Jump Gaussian Processes
- URL: http://arxiv.org/abs/2505.15557v1
- Date: Wed, 21 May 2025 14:16:56 GMT
- Title: Modular Jump Gaussian Processes
- Authors: Anna R. Flowers, Christopher T. Franck, Mickaƫl Binois, Chiwoo Park, Robert B. Gramacy,
- Abstract summary: "Jump GP" (JGP) was developed for modeling data from processes with sudden changes, or "jumps" in the output variable.<n>We aim to simplify by suggesting a more modular setup, eschewing joint inference but retaining the main JGP themes.<n>We show that each of (a) and (b) separately leads to dramatic improvements when modeling processes with jumps.
- Score: 4.1500227547798785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes (GPs) furnish accurate nonlinear predictions with well-calibrated uncertainty. However, the typical GP setup has a built-in stationarity assumption, making it ill-suited for modeling data from processes with sudden changes, or "jumps" in the output variable. The "jump GP" (JGP) was developed for modeling data from such processes, combining local GPs and latent "level" variables under a joint inferential framework. But joint modeling can be fraught with difficulty. We aim to simplify by suggesting a more modular setup, eschewing joint inference but retaining the main JGP themes: (a) learning optimal neighborhood sizes that locally respect manifolds of discontinuity; and (b) a new cluster-based (latent) feature to capture regions of distinct output levels on both sides of the manifold. We show that each of (a) and (b) separately leads to dramatic improvements when modeling processes with jumps. In tandem (but without requiring joint inference) that benefit is compounded, as illustrated on real and synthetic benchmark examples from the recent literature.
Related papers
- Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Non-Gaussian Process Regression [0.0]
We extend the GP framework into a new class of time-changed GPs that allow for straightforward modelling of heavy-tailed non-Gaussian behaviours.
We present Markov chain Monte Carlo inference procedures for this model and demonstrate the potential benefits.
arXiv Detail & Related papers (2022-09-07T13:08:22Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
We introduce a nonparametric process convolution formulation for GPs that alleviates weaknesses by using a functional sampling approach.
We propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models.
arXiv Detail & Related papers (2022-06-17T19:03:04Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Modular Gaussian Processes for Transfer Learning [0.0]
We present a framework for transfer learning based on modular variational Gaussian processes (GP)
We develop a module-based method that builds ensemble GP models without revisiting any data.
Our method avoids undesired data centralisation, reduces rising computational costs and allows the transfer of learned uncertainty metrics after training.
arXiv Detail & Related papers (2021-10-26T09:15:18Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.