HQSI: Hybrid Quantum Swarm Intelligence -- A Case Study of Online Certificate Status Protocol Request Flow Prediction
- URL: http://arxiv.org/abs/2505.15823v2
- Date: Fri, 23 May 2025 00:43:53 GMT
- Title: HQSI: Hybrid Quantum Swarm Intelligence -- A Case Study of Online Certificate Status Protocol Request Flow Prediction
- Authors: Abel C. H. Chen,
- Abstract summary: Hybrid Quantum Swarm Intelligence (HQSI) constructs a Quantum Neural Network (QNN) model as a forward propagation neural network.<n>HQSI achieves more than a 50% reduction in error against state-of-the-art quantum optimization algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As quantum computing technology continues to advance, various sectors, including industry, government, academia, and research, have increasingly focused on its future applications. With the integration of artificial intelligence techniques, multiple Quantum Neural Network (QNN) models have been proposed, including quantum convolutional neural networks, quantum long short-term memory networks, and quantum generative adversarial networks. Furthermore, optimization methods such as constrained optimization by linear approximation and simultaneous perturbation stochastic approximation have been explored. Therefore, this study proposes Hybrid Quantum Swarm Intelligence (HQSI), which constructs a QNN model as a forward propagation neural network. After measuring quantum states and obtaining prediction results, a classical computer-based swarm intelligence algorithm is employed for weight optimization. The training process iterates between quantum and classical computing environments. During the experimental phase, the proposed HQSI method is evaluated using an online certificate status protocol request traffic prediction task. Comparative analysis against state-of-the-art quantum optimization algorithms demonstrates that the proposed HQSI approach achieves more than a 50% reduction in error.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations [48.670876200492415]
Variational Quantum Algorithms (VQAs) are a promising approach for leveraging powerful Noisy Intermediate-Scale Quantum (NISQ) computers.<n>We propose $rho$DARTS, a differentiable Quantum Architecture Search (QAS) algorithm that models the search process as the evolution of a quantum mixed state.
arXiv Detail & Related papers (2025-06-04T08:30:35Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - Variational quantum-neural hybrid imaginary time evolution [0.0]
We propose variational quantum-neural hybrid ITE method (VQNHITE)<n>Our proposal accurately estimates ITE by combining the neural network and parameterized quantum circuit.<n>We tested our approach with numerical simulations to evaluate the performance of VQNHITE relative to VITE.
arXiv Detail & Related papers (2025-03-28T16:19:12Z) - Training Hybrid Deep Quantum Neural Network for Reinforcement Learning Efficiently [2.7812018782449073]
Quantum machine learning (QML) emerged recently as a novel interdisciplinary research direction.<n>Recent works on hybrid QML models, compatible with noisy intermediate-scale quantum computers, have hinted at improved performance.<n>We present a scalable QML architecture that overcomes challenges and demonstrates efficient batch optimization through PQC blocks.
arXiv Detail & Related papers (2025-03-12T07:12:02Z) - Exact Quantum Algorithm for Unit Commitment Optimization based on Partially Connected Quantum Neural Networks [12.688426228429604]
In this paper, we focus on the implement of the unit commitment problem by exact quantum algorithms based on the quantum neural network (QNN)
The results show that the exact solutions can be obtained by the improved algorithm and the depth of the quantum circuit can be reduced simultaneously.
arXiv Detail & Related papers (2024-11-18T08:29:50Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.