論文の概要: Directional Convergence, Benign Overfitting of Gradient Descent in leaky ReLU two-layer Neural Networks
- arxiv url: http://arxiv.org/abs/2505.16204v2
- Date: Mon, 06 Oct 2025 02:21:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 14:28:09.859657
- Title: Directional Convergence, Benign Overfitting of Gradient Descent in leaky ReLU two-layer Neural Networks
- Title(参考訳): リークReLU二層ニューラルネットワークにおける方向性収束, 配向重み付け
- Authors: Ichiro Hashimoto,
- Abstract要約: 降下勾配を用いた混合データに基づいて学習した漏洩ReLU二層ニューラルネットワーク分類器の良性オーバーフィッティングについて検討した。
我々は、上下両方の分類誤差境界を提供し、信号強度の関数として境界における位相遷移を発見する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we study benign overfitting of fixed width leaky ReLU two-layer neural network classifiers trained on mixture data via gradient descent. We provide both, upper and lower classification error bounds, and discover a phase transition in the bound as a function of signal strength. The lower bound leads to a characterization of cases when benign overfitting provably fails even if directional convergence occurs. Our analysis allows us to considerably relax the distributional assumptions that are made in existing work on benign overfitting of leaky ReLU two-layer neural network classifiers. We can allow for non-sub-Gaussian data and do not require near orthogonality. Our results are derived by establishing directional convergence of the network parameters and studying classification error bounds for the convergent direction. Previously, directional convergence in (leaky) ReLU neural networks was established only for gradient flow. By first establishing directional convergence, we are able to study benign overfitting of fixed width leaky ReLU two-layer neural network classifiers in a much wider range of scenarios than was done before.
- Abstract(参考訳): 本稿では,固定幅リーク型ReLU二層ニューラルネットワーク分類器の勾配勾配勾配を用いた混合データに基づく良性オーバーフィッティングについて検討する。
我々は、上下両方の分類誤差境界を提供し、信号強度の関数として境界における位相遷移を発見する。
下界は、たとえ方向収束が生じたとしても、良性過剰適合が確実に失敗する場合の特徴づけにつながる。
我々の分析は、漏れやすいReLU二層ニューラルネットワーク分類器の良性過剰適合に関する既存の研究でなされた分布仮定を、かなり緩和することを可能にする。
非ガウス的データを許すことができ、ほぼ直交性を必要としない。
この結果は,ネットワークパラメータの方向収束を確立し,収束方向の分類誤差境界を研究することによって導かれる。
従来,(リーキー)ReLUニューラルネットワークにおける指向性収束は勾配流のみに確立されていた。
指向性収束を最初に確立することにより、固定幅リークのReLU二層ニューラルネットワーク分類器の良性オーバーフィッティングを、これまでよりもはるかに幅広いシナリオで研究することができる。
関連論文リスト
- Benign Overfitting for Regression with Trained Two-Layer ReLU Networks [14.36840959836957]
本稿では,2層完全連結ニューラルネットワークを用いた最小二乗回帰問題と,勾配流によるReLU活性化関数について検討する。
最初の結果は一般化結果であり、基礎となる回帰関数や、それらが有界であること以外のノイズを仮定する必要はない。
論文 参考訳(メタデータ) (2024-10-08T16:54:23Z) - On the Convergence of Gradient Descent for Large Learning Rates [55.33626480243135]
固定ステップサイズを使用すると収束が不可能であることを示す。
正方形損失を持つ線形ニューラルネットワークの場合,これを証明した。
また、勾配に対するリプシッツ連続性のような強い仮定を必要とせず、より一般的な損失に対する収束の不可能性も証明する。
論文 参考訳(メタデータ) (2024-02-20T16:01:42Z) - Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
好ましい性質を持つ解に対する暗黙の偏見は、勾配に基づく最適化によって訓練されたニューラルネットワークがうまく一般化できる重要な理由であると考えられている。
勾配流の暗黙バイアスは、均質ニューラルネットワーク(ReLUやリークReLUネットワークを含む)に対して広く研究されているが、勾配降下の暗黙バイアスは現在、滑らかなニューラルネットワークに対してのみ理解されている。
論文 参考訳(メタデータ) (2023-10-29T08:47:48Z) - Approximation Results for Gradient Descent trained Neural Networks [0.0]
ネットワークは完全に接続された一定の深さ増加幅である。
連続カーネルエラーノルムは、滑らかな関数に必要な自然な滑らかさの仮定の下での近似を意味する。
論文 参考訳(メタデータ) (2023-09-09T18:47:55Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Improved Overparametrization Bounds for Global Convergence of Stochastic
Gradient Descent for Shallow Neural Networks [1.14219428942199]
本研究では,1つの隠れ層フィードフォワードニューラルネットワークのクラスに対して,勾配降下アルゴリズムのグローバル収束に必要な過パラメトリゼーション境界について検討する。
論文 参考訳(メタデータ) (2022-01-28T11:30:06Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - Directional Convergence Analysis under Spherically Symmetric
Distribution [21.145823611499104]
勾配流や勾配降下を伴うニューラルネットワークを用いた線形予測子(すなわち、ゼロマージンの分離可能なデータセット)の学習に関する基礎的な問題を考える。
2つの隠れノードしか持たない2層非線形ネットワークと(ディープ)線形ネットワークに対して、方向収束保証と正確な収束率を示す。
論文 参考訳(メタデータ) (2021-05-09T08:59:58Z) - When does gradient descent with logistic loss interpolate using deep
networks with smoothed ReLU activations? [51.1848572349154]
固定幅深層ネットワークに適用された勾配勾配がロジスティック損失をゼロにする条件を確立する。
解析はSwishやHuberized ReLUといったReLUのスムーズな近似に適用する。
論文 参考訳(メタデータ) (2021-02-09T18:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。