論文の概要: Quantum Feature Optimization for Enhanced Clustering of Blockchain Transaction Data
- arxiv url: http://arxiv.org/abs/2505.16672v1
- Date: Thu, 22 May 2025 13:37:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.330573
- Title: Quantum Feature Optimization for Enhanced Clustering of Blockchain Transaction Data
- Title(参考訳): ブロックチェーントランザクションデータのクラスタリング強化のための量子特徴最適化
- Authors: Yun-Cheng Tsai, Samuel Yen-Chi Chen,
- Abstract要約: トランザクションデータは、高次元性、ノイズ、複雑な特徴の絡み合いを示す。
本研究では,3つのクラスタリング手法の比較分析を行った。
浅い量子回路でも意味のある非線形表現を効果的に抽出できることを示す。
- 参考スコア(独自算出の注目度): 3.1219529587298727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blockchain transaction data exhibits high dimensionality, noise, and intricate feature entanglement, presenting significant challenges for traditional clustering algorithms. In this study, we conduct a comparative analysis of three clustering approaches: (1) Classical K-Means Clustering, applied to pre-processed feature representations; (2) Hybrid Clustering, wherein classical features are enhanced with quantum random features extracted using randomly initialized quantum neural networks (QNNs); and (3) Fully Quantum Clustering, where a QNN is trained in a self-supervised manner leveraging a SwAV-based loss function to optimize the feature space for clustering directly. The proposed experimental framework systematically investigates the impact of quantum circuit depth and the number of learned prototypes, demonstrating that even shallow quantum circuits can effectively extract meaningful non-linear representations, significantly improving clustering performance.
- Abstract(参考訳): ブロックチェーントランザクションデータは、高次元性、ノイズ、複雑な機能の絡み合いを示し、従来のクラスタリングアルゴリズムにおいて重要な課題を提示する。
本研究では,(1)前処理した特徴表現に適用される古典的K-平均クラスタリング,(2)古典的特徴をランダムに初期化量子ニューラルネットワーク(QNN)を用いて抽出した量子ランダム特徴で拡張するハイブリッドクラスタリング,(3)QNNを自己監督的に訓練し,SwaVに基づく損失関数を利用してクラスタリングのための特徴空間を直接最適化する完全量子クラスタリング,という3つのクラスタリング手法の比較分析を行う。
提案手法は, 量子回路深度と学習プロトタイプ数の影響を系統的に検討し, 浅い量子回路でも意味のある非線形表現を効果的に抽出することができ, クラスタリング性能を著しく向上させることができることを示した。
関連論文リスト
- A clustering aggregation algorithm on neutral-atoms and annealing quantum processors [0.44531072184246007]
本研究では、クラスタリングアグリゲーションを実行するためのハイブリッド量子古典アルゴリズムを提案する。
中立原子の量子コンピュータと量子アニールのために設計された。
発見は、ハイブリッド量子古典パイプラインの将来的な発展の可能性を示唆している。
論文 参考訳(メタデータ) (2024-12-10T14:48:44Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3Sは、適応クラスタリングアルゴリズムによって得られる初期クラスタ結果に対して、戦略的にアクティブクラスタリングを調整する。
さまざまな実世界のデータセットにわたる広範な実験において、A3Sは、人間のクエリを著しく少なくして、望ましい結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T13:37:03Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Ensembles of Quantum Classifiers [0.0]
量子分類アルゴリズムの実行に有効なアプローチは、アンサンブル法の導入である。
本稿では,二項分類のための量子分類器のアンサンブルの実装と実証評価について述べる。
論文 参考訳(メタデータ) (2023-11-16T10:27:25Z) - Pooling techniques in hybrid quantum-classical convolutional neural
networks [0.0]
2次元医用画像の分類のためのハイブリッド量子古典畳み込みニューラルネットワーク(QCCNN)におけるプーリング手法の詳細な研究を行う。
プールのない等価な古典モデルやQCCNNと比較すると,類似性や性能が向上する。
QCCNNにおけるアーキテクチャの選択を、将来のアプリケーションのためにより深く研究することを約束している。
論文 参考訳(メタデータ) (2023-05-09T16:51:46Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Binary classifiers for noisy datasets: a comparative study of existing
quantum machine learning frameworks and some new approaches [0.0]
バイナリ分類を改善するためにQuantum Machine Learningフレームワークを適用した。
ノイズの多いデータセットは 財務的なデータセットの中にあります
新しいモデルでは、データセットの非対称ノイズに対する学習特性が向上する。
論文 参考訳(メタデータ) (2021-11-05T10:29:05Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - Adaptive Neuro Fuzzy Networks based on Quantum Subtractive Clustering [5.957580737396458]
本稿では,tskファジィ型と改良された量子サブトラクティブクラスタリングを用いた適応型ニューロファジィネットワークを開発した。
実験結果から, 量子サブトラクティブクラスタリングに基づくAnfisは近似と一般化能力に優れていた。
論文 参考訳(メタデータ) (2021-01-26T20:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。