論文の概要: Pooling techniques in hybrid quantum-classical convolutional neural
networks
- arxiv url: http://arxiv.org/abs/2305.05603v1
- Date: Tue, 9 May 2023 16:51:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 12:02:00.154827
- Title: Pooling techniques in hybrid quantum-classical convolutional neural
networks
- Title(参考訳): ハイブリッド量子古典畳み込みニューラルネットワークにおけるプール技術
- Authors: Maureen Monnet, Hanady Gebran, Andrea Matic-Flierl, Florian Kiwit,
Balthasar Schachtner, Amine Bentellis, Jeanette Miriam Lorenz
- Abstract要約: 2次元医用画像の分類のためのハイブリッド量子古典畳み込みニューラルネットワーク(QCCNN)におけるプーリング手法の詳細な研究を行う。
プールのない等価な古典モデルやQCCNNと比較すると,類似性や性能が向上する。
QCCNNにおけるアーキテクチャの選択を、将来のアプリケーションのためにより深く研究することを約束している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning has received significant interest in recent years,
with theoretical studies showing that quantum variants of classical machine
learning algorithms can provide good generalization from small training data
sizes. However, there are notably no strong theoretical insights about what
makes a quantum circuit design better than another, and comparative studies
between quantum equivalents have not been done for every type of classical
layers or techniques crucial for classical machine learning. Particularly, the
pooling layer within convolutional neural networks is a fundamental operation
left to explore. Pooling mechanisms significantly improve the performance of
classical machine learning algorithms by playing a key role in reducing input
dimensionality and extracting clean features from the input data. In this work,
an in-depth study of pooling techniques in hybrid quantum-classical
convolutional neural networks (QCCNNs) for classifying 2D medical images is
performed. The performance of four different quantum and hybrid pooling
techniques is studied: mid-circuit measurements, ancilla qubits with controlled
gates, modular quantum pooling blocks and qubit selection with classical
postprocessing. We find similar or better performance in comparison to an
equivalent classical model and QCCNN without pooling and conclude that it is
promising to study architectural choices in QCCNNs in more depth for future
applications.
- Abstract(参考訳): 近年、量子機械学習は大きな関心を集めており、古典的機械学習アルゴリズムの量子変種は、小さなトレーニングデータサイズから優れた一般化を提供できることを示した。
しかしながら、量子回路設計が他よりも優れている理由に関する強い理論的洞察は特に存在せず、古典的機械学習に不可欠な古典的層や技法について、量子等価性の比較研究は行われていない。
特に畳み込みニューラルネットワーク内のプール層は、探索するために必要な基本的な操作である。
ポーリング機構は、入力次元を減少させ、入力データからクリーンな特徴を抽出することで、古典的な機械学習アルゴリズムの性能を著しく向上させる。
本研究では,量子古典的畳み込みニューラルネットワーク(qccnns)による2次元医用画像の分類手法について詳細に検討した。
中間回路計測,制御ゲート付きアンシラ量子ビット,モジュール型量子プールブロック,古典的後処理によるキュービット選択の4つの異なる量子およびハイブリッドプール技術の性能について検討した。
我々は,QCCNNと同等の古典的モデルやQCCNNをプールなしで比較し,QCCNNのアーキテクチャ的選択を将来的なアプリケーションでより深く研究することを約束する。
関連論文リスト
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
本稿では,知識蒸留を用いた古典的ニューラルネットワークから量子ニューラルネットワークへ知識を伝達する新しい手法を提案する。
我々は、LeNetやAlexNetのような古典的畳み込みニューラルネットワーク(CNN)アーキテクチャを教師ネットワークとして活用する。
量子モデルは、MNISTデータセットで0.80%、より複雑なFashion MNISTデータセットで5.40%の平均精度改善を達成する。
論文 参考訳(メタデータ) (2023-11-23T05:06:43Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。