論文の概要: Learning Fluid-Structure Interaction Dynamics with Physics-Informed Neural Networks and Immersed Boundary Methods
- arxiv url: http://arxiv.org/abs/2505.18565v1
- Date: Sat, 24 May 2025 07:07:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.511153
- Title: Learning Fluid-Structure Interaction Dynamics with Physics-Informed Neural Networks and Immersed Boundary Methods
- Title(参考訳): 物理インフォームドニューラルネットワークと入射境界法による流体構造相互作用ダイナミクスの学習
- Authors: Afrah Farea, Saiful Khan, Reza Daryani, Emre Cenk Ersan, Mustafa Serdar Celebi,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)と没入境界法(IBM)を組み合わせて流体構造相互作用(FSI)問題を解決するニューラルネットワークアーキテクチャを導入する。
本手法は, 統一パラメータ空間を持つ単一FSIネットワークと, 流体領域と構造領域を分離したパラメータ空間を保持するイノベーティブなユーレリア・ラグランジアンネットワークの2つの異なるアーキテクチャを特徴とする。
- 参考スコア(独自算出の注目度): 0.5991851254194096
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce neural network architectures that combine physics-informed neural networks (PINNs) with the immersed boundary method (IBM) to solve fluid-structure interaction (FSI) problems. Our approach features two distinct architectures: a Single-FSI network with a unified parameter space, and an innovative Eulerian-Lagrangian network that maintains separate parameter spaces for fluid and structure domains. We study each architecture using standard Tanh and adaptive B-spline activation functions. Empirical studies on a 2D cavity flow problem involving a moving solid structure show that the Eulerian-Lagrangian architecture performs significantly better. The adaptive B-spline activation further enhances accuracy by providing locality-aware representation near boundaries. While our methodology shows promising results in predicting the velocity field, pressure recovery remains challenging due to the absence of explicit force-coupling constraints in the current formulation. Our findings underscore the importance of domain-specific architectural design and adaptive activation functions for modeling FSI problems within the PINN framework.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)と没入境界法(IBM)を組み合わせて流体構造相互作用(FSI)問題を解決するニューラルネットワークアーキテクチャを導入する。
本手法は, 統一パラメータ空間を持つ単一FSIネットワークと, 流体領域と構造領域を分離したパラメータ空間を保持するイノベーティブなユーレリア・ラグランジアンネットワークの2つの異なるアーキテクチャを特徴とする。
標準Tanhと適応B-splineアクティベーション関数を用いて各アーキテクチャについて検討する。
移動固体構造を含む2次元空洞流問題に関する実証研究は、ユーレリア・ラグランジアン構造が著しく向上したことを示している。
適応的Bスプライン活性化は、境界付近に局所性を考慮した表現を提供することにより、さらに精度を高める。
本手法は, 速度場予測において有望な結果を示すが, 現在の定式化における力結合制約が存在しないため, 圧力回復は依然として困難である。
PINNフレームワーク内のFSI問題をモデル化するためのドメイン固有のアーキテクチャ設計と適応的アクティベーション機能の重要性を明らかにする。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Improving hp-Variational Physics-Informed Neural Networks for Steady-State Convection-Dominated Problems [4.0974219394860505]
本稿では,より正確にはFastVPINNsフレームワークであるhp-可変物理インフォームドニューラルネットワークを対流支配対流拡散反応問題に適用する2つの拡張について検討する。
まず、損失関数にSUPG安定化の精神の項を含め、空間的に変化する安定化パラメータを予測するネットワークアーキテクチャを提案する。
第二の新規性は、指標関数のクラスのよいパラメータを学習するネットワークアーキテクチャの提案である。
論文 参考訳(メタデータ) (2024-11-14T10:21:41Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Structured Neural Networks for Density Estimation and Causal Inference [15.63518195860946]
ニューラルネットワークに構造を注入することで、入力のサブセットに関する不変性を満たす学習機能を実現することができる。
本稿では,ニューラルネットワークのマスキング経路を通じて構造を注入する構造ニューラルネットワーク(StrNN)を提案する。
論文 参考訳(メタデータ) (2023-11-03T20:15:05Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Effects of boundary conditions in fully convolutional networks for
learning spatio-temporal dynamics [0.0]
本稿では,境界条件を課すためのいくつかの戦略について検討する。
最適なパディング戦略の選択は、データセマンティクスに直接関連している。
追加の入力空間コンテキストや明示的な物理に基づく規則を含めることで、特に多くの繰り返しに対して境界の扱いがより良くなる。
論文 参考訳(メタデータ) (2021-06-21T14:58:41Z) - Learning Interpretable Models for Coupled Networks Under Domain
Constraints [8.308385006727702]
脳ネットワークの構造的エッジと機能的エッジの相互作用に着目して,結合ネットワークの概念を検討する。
相互作用を推定しながらノイズ項にハードネットワークの制約を課す新しい定式化を提案する。
ヒトコネクトームプロジェクトから得られたマルチシェル拡散およびタスク誘発fMRIデータセットの手法を検証する。
論文 参考訳(メタデータ) (2021-04-19T06:23:31Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
ニューラルネットワークアーキテクチャの制約に基づく表現について検討する。
本稿では,いわゆるアーキテクチャ制約を満たすのに適した簡単な最適化手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T16:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。