論文の概要: A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs
- arxiv url: http://arxiv.org/abs/2409.10910v1
- Date: Tue, 17 Sep 2024 06:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:48:51.771372
- Title: A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs
- Title(参考訳): 結合移動境界PDEのための物理インフォームドニューラルネットワーク(PINN)手法
- Authors: Shivprasad Kathane, Shyamprasad Karagadde,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-Informed Neural Network (PINN) is a novel multi-task learning framework useful for solving physical problems modeled using differential equations (DEs) by integrating the knowledge of physics and known constraints into the components of deep learning. A large class of physical problems in materials science and mechanics involve moving boundaries, where interface flux balance conditions are to be satisfied while solving DEs. Examples of such systems include free surface flows, shock propagation, solidification of pure and alloy systems etc. While recent research works have explored applicability of PINNs for an uncoupled system (such as solidification of pure system), the present work reports a PINN-based approach to solve coupled systems involving multiple governing parameters (energy and species, along with multiple interface balance equations). This methodology employs an architecture consisting of a separate network for each variable with a separate treatment of each phase, a training strategy which alternates between temporal learning and adaptive loss weighting, and a scheme which progressively reduces the optimisation space. While solving the benchmark problem of binary alloy solidification, it is distinctly successful at capturing the complex composition profile, which has a characteristic discontinuity at the interface and the resulting predictions align well with the analytical solutions. The procedure can be generalised for solving other transient multiphysics problems especially in the low-data regime and in cases where measurements can reveal new physics.
- Abstract(参考訳): 物理情報ニューラルネットワーク(Physor-Informed Neural Network, PINN)は、物理の知識と既知の制約を深層学習の構成要素に統合することにより、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである。
物質科学と力学における多くの物理問題は、DESを解きながら界面フラックスバランス条件を満たすような移動境界を含む。
そのようなシステムの例としては、自由表面の流れ、衝撃伝播、純合金の凝固などがある。
近年の研究では、結合のないシステム(純粋なシステムの固化など)に対するPINNの適用性について検討されているが、本研究では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチを報告している。
本手法では,各変数に対して,各位相を個別に処理した個別のネットワークと,時間的学習と適応的損失重み付けを交互に行うトレーニング戦略と,最適化空間を段階的に削減するスキームとからなるアーキテクチャを用いる。
二元合金凝固のベンチマーク問題を解く一方で、界面に特徴的な不連続性を持つ複雑な組成プロファイルを捉えることに成功し、その結果の予測は解析解とよく一致している。
この手順は、特に低データ状態や測定結果が新しい物理を明らかにする場合において、他の過渡多物理問題を解くために一般化することができる。
関連論文リスト
- SetPINNs: Set-based Physics-informed Neural Networks [19.27512418720287]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングを用いて偏微分方程式(PDE)の解を近似する有望な方法として登場した。
数値解析の分野から有限要素法に着想を得た新しい手法であるSetPINNを提案する。
本研究では,様々な物理システムにおいて,SetPINNが優れた一般化性能と精度を示すことを示す。
論文 参考訳(メタデータ) (2024-09-30T11:41:58Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Parallel Physics-Informed Neural Networks with Bidirectional Balance [0.0]
物理インフォームドニューラルネットワーク(PINN)は工学における様々な偏微分方程式(PDE)の解法として広く用いられている。
ここでは, 多層構造における熱伝達問題を典型例として挙げる。
本稿では,双方向バランスを持つ並列物理インフォームニューラルネットワークを提案する。
提案手法は, PINNを解けない問題にし, 優れた解法精度を実現する。
論文 参考訳(メタデータ) (2021-11-10T11:13:33Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
本手法は,複雑な物理系の理解に成功し,PDEに関わるタスクに対してそれらを制御できることを実証する。
論文 参考訳(メタデータ) (2020-01-21T11:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。