ADGSyn: Dual-Stream Learning for Efficient Anticancer Drug Synergy Prediction
- URL: http://arxiv.org/abs/2505.19144v1
- Date: Sun, 25 May 2025 13:40:13 GMT
- Title: ADGSyn: Dual-Stream Learning for Efficient Anticancer Drug Synergy Prediction
- Authors: Yuxuan Nie, Yutong Song, Hong Peng,
- Abstract summary: We propose ADGSyn, an innovative method for predicting drug synergy.<n> Evaluated on the O'Neil dataset containing 13,243 drug--cell line combinations, ADGSyn demonstrates superior performance over eight baseline methods.
- Score: 0.9064217048217067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug combinations play a critical role in cancer therapy by significantly enhancing treatment efficacy and overcoming drug resistance. However, the combinatorial space of possible drug pairs grows exponentially, making experimental screening highly impractical. Therefore, developing efficient computational methods to predict promising drug combinations and guide experimental validation is of paramount importance. In this work, we propose ADGSyn, an innovative method for predicting drug synergy. The key components of our approach include: (1) shared projection matrices combined with attention mechanisms to enable cross-drug feature alignment; (2) automatic mixed precision (AMP)-optimized graph operations that reduce memory consumption by 40\% while accelerating training speed threefold; and (3) residual pathways stabilized by LayerNorm to ensure stable gradient propagation during training. Evaluated on the O'Neil dataset containing 13,243 drug--cell line combinations, ADGSyn demonstrates superior performance over eight baseline methods. Moreover, the framework supports full-batch processing of up to 256 molecular graphs on a single GPU, setting a new standard for efficiency in drug synergy prediction within the field of computational oncology.
Related papers
- DrugImproverGPT: A Large Language Model for Drug Optimization with Fine-Tuning via Structured Policy Optimization [53.27954325490941]
Finetuning a Large Language Model (LLM) is crucial for generating results towards specific objectives.<n>This research introduces a novel reinforcement learning algorithm to finetune a drug optimization LLM-based generative model.
arXiv Detail & Related papers (2025-02-11T04:00:21Z) - ScaffoldGPT: A Scaffold-based GPT Model for Drug Optimization [3.240904428766923]
ScaffoldGPT is a Generative Pretrained Transformer (GPT) designed for drug optimization based on molecular scaffolds.<n>Our work comprises three key components: (1) A three-stage drug optimization approach that integrates pretraining, finetuning, and decoding optimization.<n>We demonstrate via a comprehensive evaluation on COVID and cancer benchmarks that ScaffoldGPT outperforms the competing baselines in drug optimization benchmarks.
arXiv Detail & Related papers (2025-02-09T10:36:33Z) - MD-Syn: Synergistic drug combination prediction based on the multidimensional feature fusion method and attention mechanisms [0.0]
Drug combination therapies have shown promising therapeutic efficacy in complex diseases and have demonstrated the potential to reduce drug resistance.<n>The huge number of possible drug combinations makes it difficult to screen them all in traditional experiments.<n>In this study, we proposed MD-Syn, a computational framework, which is based on the multidimensional feature fusion method and multi-head attention mechanisms.
arXiv Detail & Related papers (2025-01-14T06:50:56Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - ALNSynergy: a graph convolutional network with multi-representation alignment for drug synergy prediction [8.316187397380244]
Drug combination refers to the use of two or more drugs to treat a specific disease at the same time.
In this work, we propose ALNSynergy, a graph convolutional network with multi-representation alignment for predicting drug synergy.
arXiv Detail & Related papers (2023-11-27T15:34:14Z) - CongFu: Conditional Graph Fusion for Drug Synergy Prediction [8.939263684319263]
CongFu is a Conditional Graph Fusion Layer designed to predict drug synergy.
It achieves state-of-the-art results on 11 out of 12 benchmark datasets.
We propose an explainability strategy for elucidating the effect of drugs on genes.
arXiv Detail & Related papers (2023-05-23T20:46:17Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
arXiv Detail & Related papers (2021-07-06T08:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.