論文の概要: Multi-Agent Reinforcement Learning in Cybersecurity: From Fundamentals to Applications
- arxiv url: http://arxiv.org/abs/2505.19837v1
- Date: Mon, 26 May 2025 11:19:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.378989
- Title: Multi-Agent Reinforcement Learning in Cybersecurity: From Fundamentals to Applications
- Title(参考訳): サイバーセキュリティにおけるマルチエージェント強化学習の基礎から応用まで
- Authors: Christoph R. Landolt, Christoph Würsch, Roland Meier, Alain Mermoud, Julian Jang-Jaccard,
- Abstract要約: MARL(Multi-Agent Reinforcement Learning)は、現代のサイバーセキュリティ問題に対処するための適応的なソリューションとして大きな可能性を示している。
MARLは分散的で適応的で協調的な防衛戦略を可能にし、動的で協調的で洗練された脅威と戦うための自動メカニズムを提供する。
- 参考スコア(独自算出の注目度): 2.180158274842657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Agent Reinforcement Learning (MARL) has shown great potential as an adaptive solution for addressing modern cybersecurity challenges. MARL enables decentralized, adaptive, and collaborative defense strategies and provides an automated mechanism to combat dynamic, coordinated, and sophisticated threats. This survey investigates the current state of research in MARL applications for automated cyber defense (ACD), focusing on intruder detection and lateral movement containment. Additionally, it examines the role of Autonomous Intelligent Cyber-defense Agents (AICA) and Cyber Gyms in training and validating MARL agents. Finally, the paper outlines existing challenges, such as scalability and adversarial robustness, and proposes future research directions. This also discusses how MARL integrates in AICA to provide adaptive, scalable, and dynamic solutions to counter the increasingly sophisticated landscape of cyber threats. It highlights the transformative potential of MARL in areas like intrusion detection and lateral movement containment, and underscores the value of Cyber Gyms for training and validation of AICA.
- Abstract(参考訳): MARL(Multi-Agent Reinforcement Learning)は、現代のサイバーセキュリティ問題に対処するための適応的なソリューションとして大きな可能性を示している。
MARLは分散的で適応的で協調的な防衛戦略を可能にし、動的で協調的で洗練された脅威と戦うための自動メカニズムを提供する。
本研究では,MARLによる自動サイバー防御(ACD)研究の現状について調査し,侵入者検出と横方向の動作封じ込めに着目した。
さらに、MARLエージェントの訓練および検証において、自律的インテリジェントサイバー防御エージェント(AICA)とサイバージム(Cyber Gyms)の役割について検討する。
最後に,スケーラビリティや対角的堅牢性といった既存の課題について概説し,今後の研究方向性を提案する。
これはまた、MARLがAICAにどのように統合され、より洗練されたサイバー脅威の状況に対応する適応的でスケーラブルでダイナミックなソリューションを提供するかについても論じる。
侵入検知や横移動を含む領域におけるMARLの変容の可能性を強調し、AICAのトレーニングと検証のためのサイバージムの価値を強調している。
関連論文リスト
- Exploring the Role of Large Language Models in Cybersecurity: A Systematic Survey [25.73174314007904]
従来のサイバーセキュリティアプローチは、現代のサイバー攻撃の急速に進化する性質に適応するために苦労している。
LLM(Large Language Model)の出現は、ますます深刻なサイバー脅威に対処する革新的なソリューションを提供する。
サイバー攻撃に対してLLMを効果的に活用する方法を模索することは、現在の研究分野においてホットな話題となっている。
論文 参考訳(メタデータ) (2025-04-22T06:28:08Z) - Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence [0.0]
この原稿は、エージェントAIとフロンティアAIの収束がサイバーセキュリティをいかに変えているかを説明する。
本稿では,リアルタイムモニタリング,自動インシデント応答,永続的学習といった,レジリエントでダイナミックな防衛エコシステム構築における役割について検討する。
我々のビジョンは、テクノロジーのイノベーションを、倫理的監視を揺るがさずに調和させることであり、未来のAIによるセキュリティソリューションが、新たなサイバー脅威を効果的に対処しつつ、公正性、透明性、説明責任の核心的価値を維持することを保証することである。
論文 参考訳(メタデータ) (2025-02-28T20:23:35Z) - A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments [55.60375624503877]
モデル抽出攻撃(MEA)は、敵がモデルを盗み、知的財産と訓練データを公開することによって、現代の機械学習システムを脅かす。
この調査は、クラウド、エッジ、フェデレーションのユニークな特性がどのように攻撃ベクトルや防御要件を形作るのかを、緊急に理解する必要に起因している。
本研究は, 自動運転車, 医療, 金融サービスといった重要な分野において, 環境要因がセキュリティ戦略にどう影響するかを実証し, 攻撃手法と防衛機構の進化を系統的に検討する。
論文 参考訳(メタデータ) (2025-02-22T03:46:50Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
マルチエージェントディープ強化学習(MADRL)は、自律型サイバーオペレーションの有効性とレジリエンスを高めるための有望なアプローチである。
シミュレーションサイバー攻撃シナリオにおいて,各エージェントが迅速に学習し,MADRLを用いて自律的に脅威に対処できることを実証する。
論文 参考訳(メタデータ) (2024-10-11T15:15:09Z) - The Malware as a Service ecosystem [5.973995274784383]
この研究は、MaaSが従来のサイバーセキュリティ防衛にもたらす重大な課題を強調している。
防衛戦略のパラダイムシフト、動的分析、行動検出、AIと機械学習技術の統合を提唱する声もある。
最終的な目標は、コモディティ化されたマルウェアの脅威の拡散に対抗するための、より効果的な戦略の開発を支援することである。
論文 参考訳(メタデータ) (2024-05-07T08:25:12Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
敵のサンプル検出は、特に急速に進化する攻撃に直面して、適応的なサイバー防御において重要な役割を果たす。
本稿では,BERT(Bidirectional Representations from Transformers)のパワーを活用し,空間探索機能(Space Exploration Features)の概念を提案する。
論文 参考訳(メタデータ) (2023-08-29T23:02:26Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。