NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
- URL: http://arxiv.org/abs/2505.21020v3
- Date: Mon, 04 Aug 2025 19:40:55 GMT
- Title: NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
- Authors: Yuan Gao, Ruiqi Shu, Hao Wu, Fan Xu, Yanfei Xiang, Ruijian Gou, Qingsong Wen, Xian Wu, Kun Wang, Xiaomeng Huang,
- Abstract summary: We propose NeuralOM, a general neural operator framework for simulating complex, slow-changing dynamics.<n>We validate NeuralOM on the challenging task of global Subseasonal-to-Seasonal (S2S) ocean simulation.<n>NeuralOM achieves a 13.3% lower RMSE compared to the best-performing baseline.
- Score: 41.41450298461784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term, high-fidelity simulation of slow-changing physical systems, such as the ocean and climate, presents a fundamental challenge in scientific computing. Traditional autoregressive machine learning models often fail in these tasks as minor errors accumulate and lead to rapid forecast degradation. To address this problem, we propose NeuralOM, a general neural operator framework designed for simulating complex, slow-changing dynamics. NeuralOM's core consists of two key innovations: (1) a Progressive Residual Correction Framework that decomposes the forecasting task into a series of fine-grained refinement steps, effectively suppressing long-term error accumulation; and (2) a Physics-Guided Graph Network whose built-in adaptive messaging mechanism explicitly models multi-scale physical interactions, such as gradient-driven flows and multiplicative couplings, thereby enhancing physical consistency while maintaining computational efficiency. We validate NeuralOM on the challenging task of global Subseasonal-to-Seasonal (S2S) ocean simulation. Extensive experiments demonstrate that NeuralOM not only surpasses state-of-the-art models in forecast accuracy and long-term stability, but also excels in simulating extreme events. For instance, at a 60-day lead time, NeuralOM achieves a 13.3% lower RMSE compared to the best-performing baseline, offering a stable, efficient, and physically-aware paradigm for data-driven scientific computing. Code link: https://github.com/YuanGao-YG/NeuralOM.
Related papers
- Integrating Newton's Laws with deep learning for enhanced physics-informed compound flood modelling [0.8999666725996978]
Coastal communities increasingly face compound floods, where multiple drivers like storm surge, high tide, heavy rainfall, and river discharge occur together or in sequence.<n>Traditional hydrodynamic models can provide accurate physics-based simulations but require substantial computational resources for real-time applications or risk assessments.<n>This study addresses these challenges by developing ALPINE, a physics-informed neural network framework to enforce complete shallow water dynamics in compound flood modeling.
arXiv Detail & Related papers (2025-07-20T16:06:10Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - OmniFluids: Unified Physics Pre-trained Modeling of Fluid Dynamics [25.066485418709114]
We introduce OmniFluids, a unified physics pre-trained operator learning framework.<n>It integrates physics-only pre-training, coarse-grid operator distillation, and few-shot fine-tuning.<n>It significantly outperforms state-of-the-art AI-driven methods in flow field reconstruction and turbulence statistics accuracy.
arXiv Detail & Related papers (2025-06-12T16:23:02Z) - Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time [57.30651532625017]
We present a novel hybrid method that integrates numerical simulation, neural physics, and generative control.<n>Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions.<n>We promise to release both models and data upon acceptance.
arXiv Detail & Related papers (2025-05-25T01:27:18Z) - Generalizable Implicit Neural Representations via Parameterized Latent Dynamics for Baroclinic Ocean Forecasting [15.223198342339803]
PINROD is a novel framework combining dynamics-aware implicit neural representations with parameterized neural ordinary differential equations.<n>Experiments on ocean mesoscale parametric activity show superior accuracy over existing baselines.
arXiv Detail & Related papers (2025-03-27T15:04:52Z) - Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
We present a method to jointly solve the sensing and model identification problems with simple implementation, efficient, and robust performance.<n>SINDy-SHRED uses Gated Recurrent Units to model sparse sensor measurements along with a shallow network decoder to reconstruct the full-temporal field from the latent state space.<n>We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data.
arXiv Detail & Related papers (2025-01-23T02:18:13Z) - Surrogate Neural Networks to Estimate Parametric Sensitivity of Ocean
Models [2.956865819041394]
Ocean processes affect phenomena such as hurricanes and droughts.
For an idealized ocean model, we generated perturbed parameter ensemble data and trained surrogate neural network models.
The neural surrogates accurately predicted the one-step forward dynamics, of which we then computed the parametric sensitivity.
arXiv Detail & Related papers (2023-11-10T16:37:43Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
We propose NeuralClothSim, a new quasistatic cloth simulator using thin shells.
Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields.
arXiv Detail & Related papers (2023-08-24T17:59:54Z) - AI-GOMS: Large AI-Driven Global Ocean Modeling System [3.635120568177384]
Ocean modeling is a powerful tool for simulating the physical, chemical, and biological processes of the ocean.
Here, we present AI-GOMS, a large AI-driven global ocean modeling system, for accurate and efficient global ocean daily prediction.
arXiv Detail & Related papers (2023-08-06T15:59:30Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
We introduce MultiScaleGNN, a novel multi-scale graph neural network model for learning to infer unsteady continuum mechanics.
We demonstrate this method on advection problems and incompressible fluid dynamics, both fundamental phenomena in oceanic and atmospheric processes.
Simulations obtained with MultiScaleGNN are between two and four orders of magnitude faster than those on which it was trained.
arXiv Detail & Related papers (2022-05-05T13:33:03Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Learning Free-Surface Flow with Physics-Informed Neural Networks [0.0]
We build on the notion of physics-informed neural networks (PINNs) and employ them in the area of shallow-water equation (SWE) models.
These models play an important role in modeling and simulating free-surface flow scenarios such as in flood-wave propagation or tsunami waves.
arXiv Detail & Related papers (2021-11-17T18:45:55Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Alternating ConvLSTM: Learning Force Propagation with Alternate State
Updates [29.011464047344614]
We introduce the alternating convolutional Long Short-Term Memory (Alt-ConvLSTM) that models the force propagation mechanisms in a deformable object with near-uniform material properties.
We demonstrate how this novel scheme imitates the alternate updates of the first and second-order terms in the forward method of numerical PDE solvers.
We validate our Alt-ConvLSTM on human soft tissue simulation with thousands of particles and consistent body pose changes.
arXiv Detail & Related papers (2020-06-14T06:43:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.