Risk-Sensitive Conformal Prediction for Catheter Placement Detection in Chest X-rays
- URL: http://arxiv.org/abs/2505.22496v1
- Date: Wed, 28 May 2025 15:47:10 GMT
- Title: Risk-Sensitive Conformal Prediction for Catheter Placement Detection in Chest X-rays
- Authors: Long Hui,
- Abstract summary: This paper presents a novel approach to catheter and line position detection in chest X-rays.<n>Our model simultaneously performs classification, segmentation, and landmark detection.<n>Risk-sensitive conformal prediction provides statistically guaranteed prediction sets with higher reliability for clinically critical findings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to catheter and line position detection in chest X-rays, combining multi-task learning with risk-sensitive conformal prediction to address critical clinical requirements. Our model simultaneously performs classification, segmentation, and landmark detection, leveraging the synergistic relationship between these tasks to improve overall performance. We further enhance clinical reliability through risk-sensitive conformal prediction, which provides statistically guaranteed prediction sets with higher reliability for clinically critical findings. Experimental results demonstrate excellent performance with 90.68\% overall empirical coverage and 99.29\% coverage for critical conditions, while maintaining remarkable precision in prediction sets. Most importantly, our risk-sensitive approach achieves zero high-risk mispredictions (cases where the system dangerously declares problematic tubes as confidently normal), making the system particularly suitable for clinical deployment. This work offers both accurate predictions and reliably quantified uncertainty -- essential features for life-critical medical applications.
Related papers
- Conformal Risk Control for Pulmonary Nodule Detection [1.435675484176397]
We present a case study on pulmonary nodule detection for lung cancer screening.<n>We enhance an advanced detection model with an uncertainty quantification technique called conformal risk control (CRC)<n>We demonstrate that prediction sets with conformal guarantees are attractive measures of predictive uncertainty in the safety-critical healthcare domain.
arXiv Detail & Related papers (2024-12-28T14:41:57Z) - Towards Integrating Epistemic Uncertainty Estimation into the Radiotherapy Workflow [40.07325268305058]
The precision of contouring target structures and organs-at-risk (OAR) in radiotherapy planning is crucial for ensuring treatment efficacy and patient safety.
Recent advancements in deep learning (DL) have significantly improved OAR contouring performance.
However, the reliability of these models, especially in the presence of out-of-distribution (OOD) scenarios, remains a concern in clinical settings.
arXiv Detail & Related papers (2024-09-27T10:55:58Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Uncertainty Quantification on Clinical Trial Outcome Prediction [37.25114005044208]
We propose incorporating uncertainty quantification into clinical trial outcome predictions.<n>Our main goal is to enhance the model's ability to discern nuanced differences.<n>We have adopted a selective classification approach to fulfill our objective.
arXiv Detail & Related papers (2024-01-07T13:48:05Z) - U-PASS: an Uncertainty-guided deep learning Pipeline for Automated Sleep
Staging [61.6346401960268]
We propose a machine learning pipeline called U-PASS tailored for clinical applications that incorporates uncertainty estimation at every stage of the process.
We apply our uncertainty-guided deep learning pipeline to the challenging problem of sleep staging and demonstrate that it systematically improves performance at every stage.
arXiv Detail & Related papers (2023-06-07T08:27:36Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology [40.96261204117952]
We train models to identify lung adenocarcinoma vs. squamous cell carcinoma and show that high-confidence predictions outperform predictions without UQ.
We show that UQ thresholding remains reliable in the setting of domain shift, with accurate high-confidence predictions of adenocarcinoma vs. squamous cell carcinoma for out-of-distribution, non-lung cancer cohorts.
arXiv Detail & Related papers (2022-04-09T17:35:37Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
This work advances the understanding of uncertainty estimation for classification and risk prediction on medical data.
In a data-scarce field such as healthcare, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools.
arXiv Detail & Related papers (2020-04-13T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.