Conformal Risk Control for Pulmonary Nodule Detection
- URL: http://arxiv.org/abs/2412.20167v1
- Date: Sat, 28 Dec 2024 14:41:57 GMT
- Title: Conformal Risk Control for Pulmonary Nodule Detection
- Authors: Roel Hulsman, Valentin Comte, Lorenzo Bertolini, Tobias Wiesenthal, Antonio Puertas Gallardo, Mario Ceresa,
- Abstract summary: We present a case study on pulmonary nodule detection for lung cancer screening.<n>We enhance an advanced detection model with an uncertainty quantification technique called conformal risk control (CRC)<n>We demonstrate that prediction sets with conformal guarantees are attractive measures of predictive uncertainty in the safety-critical healthcare domain.
- Score: 1.435675484176397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative tools are increasingly appealing for decision support in healthcare, driven by the growing capabilities of advanced AI systems. However, understanding the predictive uncertainties surrounding a tool's output is crucial for decision-makers to ensure reliable and transparent decisions. In this paper, we present a case study on pulmonary nodule detection for lung cancer screening, enhancing an advanced detection model with an uncertainty quantification technique called conformal risk control (CRC). We demonstrate that prediction sets with conformal guarantees are attractive measures of predictive uncertainty in the safety-critical healthcare domain, allowing end-users to achieve arbitrary validity by trading off false positives and providing formal statistical guarantees on model performance. Among ground-truth nodules annotated by at least three radiologists, our model achieves a sensitivity that is competitive with that generally achieved by individual radiologists, with a slight increase in false positives. Furthermore, we illustrate the risks of using off-the-shelve prediction models when faced with ontological uncertainty, such as when radiologists disagree on what constitutes the ground truth on pulmonary nodules.
Related papers
- Risk-Sensitive Conformal Prediction for Catheter Placement Detection in Chest X-rays [0.0]
This paper presents a novel approach to catheter and line position detection in chest X-rays.<n>Our model simultaneously performs classification, segmentation, and landmark detection.<n>Risk-sensitive conformal prediction provides statistically guaranteed prediction sets with higher reliability for clinically critical findings.
arXiv Detail & Related papers (2025-05-28T15:47:10Z) - Hesitation is defeat? Connecting Linguistic and Predictive Uncertainty [2.8186733524862158]
This paper investigates the relationship between predictive uncertainty and human/linguistic uncertainty, as estimated from free-text reports labelled by rule-based labellers.<n>The results demonstrate good model performance, but also a modest correlation between predictive and linguistic uncertainty, highlighting the challenges in aligning machine uncertainty with human interpretation.
arXiv Detail & Related papers (2025-05-06T18:34:37Z) - Conformal Risk Control for Semantic Uncertainty Quantification in Computed Tomography [8.992691662614206]
We present a conformal risk control (CRC) procedure for organ-dependent uncertainty estimation.
We make this procedure semantically adaptive to each patient's anatomy and positioning of organs.
Our method, sem-CRC, provides tighter uncertainty intervals with valid coverage on real-world computed tomography (CT) data.
arXiv Detail & Related papers (2025-02-28T19:27:07Z) - Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
We propose a new uncertainty-aware stereo matching framework.
We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification [10.265080819932614]
This study presents an uncertainty-aware stacked neural networks model for the reliable classification of COVID-19 from radiological images.
The model addresses the critical gap in uncertainty-aware modeling by focusing on accurately identifying confidently correct predictions.
The architecture integrates uncertainty quantification methods, including Monte Carlo dropout and ensemble techniques, to enhance predictive reliability.
arXiv Detail & Related papers (2024-09-19T04:20:12Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Diagnosis Uncertain Models For Medical Risk Prediction [80.07192791931533]
We consider a patient risk model which has access to vital signs, lab values, and prior history but does not have access to a patient's diagnosis.
We show that such all-cause' risk models have good generalization across diagnoses but have a predictable failure mode.
We propose a fix for this problem by explicitly modeling the uncertainty in risk prediction coming from uncertainty in patient diagnoses.
arXiv Detail & Related papers (2023-06-29T23:36:04Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology [40.96261204117952]
We train models to identify lung adenocarcinoma vs. squamous cell carcinoma and show that high-confidence predictions outperform predictions without UQ.
We show that UQ thresholding remains reliable in the setting of domain shift, with accurate high-confidence predictions of adenocarcinoma vs. squamous cell carcinoma for out-of-distribution, non-lung cancer cohorts.
arXiv Detail & Related papers (2022-04-09T17:35:37Z) - Confidence-Guided Radiology Report Generation [24.714303916431078]
We propose a novel method to quantify both the visual uncertainty and the textual uncertainty for the task of radiology report generation.
Our experimental results have demonstrated that our proposed method for model uncertainty characterization and estimation can provide more reliable confidence scores for radiology report generation.
arXiv Detail & Related papers (2021-06-21T07:02:12Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.