LLM Agents for Bargaining with Utility-based Feedback
- URL: http://arxiv.org/abs/2505.22998v2
- Date: Wed, 18 Jun 2025 22:46:16 GMT
- Title: LLM Agents for Bargaining with Utility-based Feedback
- Authors: Jihwan Oh, Murad Aghazada, Se-Young Yun, Taehyeon Kim,
- Abstract summary: We introduce a comprehensive framework centered on utility-based feedback.<n>Our contributions are threefold: (1) BargainArena, a novel benchmark dataset; (2) human-aligned, economically-grounded evaluation metrics inspired by utility theory; and (3) a structured feedback mechanism enabling LLMs to iteratively refine their bargaining strategies.
- Score: 23.357706450282002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bargaining, a critical aspect of real-world interactions, presents challenges for large language models (LLMs) due to limitations in strategic depth and adaptation to complex human factors. Existing benchmarks often fail to capture this real-world complexity. To address this and enhance LLM capabilities in realistic bargaining, we introduce a comprehensive framework centered on utility-based feedback. Our contributions are threefold: (1) BargainArena, a novel benchmark dataset with six intricate scenarios (e.g., deceptive practices, monopolies) to facilitate diverse strategy modeling; (2) human-aligned, economically-grounded evaluation metrics inspired by utility theory, incorporating agent utility and negotiation power, which implicitly reflect and promote opponent-aware reasoning (OAR); and (3) a structured feedback mechanism enabling LLMs to iteratively refine their bargaining strategies. This mechanism can positively collaborate with in-context learning (ICL) prompts, including those explicitly designed to foster OAR. Experimental results show that LLMs often exhibit negotiation strategies misaligned with human preferences, and that our structured feedback mechanism significantly improves their performance, yielding deeper strategic and opponent-aware reasoning.
Related papers
- Adversarial Testing in LLMs: Insights into Decision-Making Vulnerabilities [5.0778942095543576]
This paper introduces an adversarial evaluation framework designed to systematically stress-test the decision-making processes of Large Language Models.<n>We apply this framework to several state-of-the-art LLMs, including GPT-3.5, GPT-4, Gemini-1.5, and DeepSeek-V3.<n>Our findings highlight distinct behavioral patterns across models and emphasize the importance of adaptability and fairness recognition for trustworthy AI deployment.
arXiv Detail & Related papers (2025-05-19T14:50:44Z) - The Influence of Human-inspired Agentic Sophistication in LLM-driven Strategic Reasoners [3.5083201638203154]
We evaluate the role of agentic sophistication in shaping artificial reasoners' performance.<n>We benchmarked three agent designs: a simple game-theoretic model, an unstructured LLM-as-agent model, and an LLM integrated into a traditional agentic framework.<n>Our analysis, covering over 2000 reasoning samples across 25 agent configurations, shows that human-inspired cognitive structures can enhance LLM agents' alignment with human strategic behaviour.
arXiv Detail & Related papers (2025-05-14T13:51:24Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
We propose explicit policy optimization (EPO) for strategic reasoning.<n>We train the strategic reasoning model via multi-turn reinforcement learning (RL),utilizing process rewards and iterative self-play.<n>Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies.
arXiv Detail & Related papers (2025-02-18T03:15:55Z) - How Strategic Agents Respond: Comparing Analytical Models with LLM-Generated Responses in Strategic Classification [9.296248945826084]
We propose using strategic advice generated by large language models to simulate human agent responses in Strategic Classification.<n>We examine five critical SC scenarios -- hiring, loan applications, school admissions, personal income, and public assistance programs.<n>We then compare the resulting agent responses with the best responses generated by existing theoretical models.
arXiv Detail & Related papers (2025-01-20T01:39:03Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare.
It is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior.
arXiv Detail & Related papers (2024-06-15T13:16:44Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
It requires Large Language Model (LLM) agents to adapt their strategies dynamically in multi-agent environments.
We propose a novel framework: "K-Level Reasoning with Large Language Models (K-R)"
arXiv Detail & Related papers (2024-02-02T16:07:05Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.