Pretraining Deformable Image Registration Networks with Random Images
- URL: http://arxiv.org/abs/2505.24167v1
- Date: Fri, 30 May 2025 03:22:10 GMT
- Title: Pretraining Deformable Image Registration Networks with Random Images
- Authors: Junyu Chen, Shuwen Wei, Yihao Liu, Aaron Carass, Yong Du,
- Abstract summary: Recent advances in deep learning-based medical image registration have shown that training deep neural networks does not necessarily require medical images.<n>We propose using registration between random images as a proxy task for pretraining a foundation model for image registration.
- Score: 10.071355308700232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep learning-based medical image registration have shown that training deep neural networks~(DNNs) does not necessarily require medical images. Previous work showed that DNNs trained on randomly generated images with carefully designed noise and contrast properties can still generalize well to unseen medical data. Building on this insight, we propose using registration between random images as a proxy task for pretraining a foundation model for image registration. Empirical results show that our pretraining strategy improves registration accuracy, reduces the amount of domain-specific data needed to achieve competitive performance, and accelerates convergence during downstream training, thereby enhancing computational efficiency.
Related papers
- Enhancing pretraining efficiency for medical image segmentation via transferability metrics [0.0]
In medical image segmentation tasks, the scarcity of labeled training data poses a significant challenge.
We introduce a novel transferability metric, based on contrastive learning, that measures how robustly a pretrained model is able to represent the target data.
arXiv Detail & Related papers (2024-10-24T12:11:52Z) - Recurrent Inference Machine for Medical Image Registration [11.351457718409788]
We propose a novel image registration method, termed Recurrent Inference Image Registration (RIIR) network.
RIIR is formulated as a meta-learning solver to the registration problem in an iterative manner.
Our experiments showed that RIIR outperformed a range of deep learning-based methods, even with only $5%$ of the training data.
arXiv Detail & Related papers (2024-06-19T10:06:35Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - CAR-Net: Unsupervised Co-Attention Guided Registration Network for Joint
Registration and Structure Learning [73.03885837923599]
We propose a novel deep learning network, Co-Attention guided Registration Network (CAR-Net)
CAR-Net employs a co-attention block to learn a new representation of the inputs, which drives the registration of the fixed and moving images.
Experiments on UK Biobank cardiac cine-magnetic resonance image data demonstrate that CAR-Net obtains higher registration accuracy and smoother deformation fields than state-of-the-art unsupervised registration methods.
arXiv Detail & Related papers (2021-06-11T23:25:49Z) - A low-rank representation for unsupervised registration of medical
images [10.499611180329804]
We propose a novel approach based on a low-rank representation, i.e., Regnet-LRR, to tackle the problem of noisy data registration scenarios.
We show that the low-rank representation can boost the ability and robustness of models as well as bring significant improvements in noisy data registration scenarios.
arXiv Detail & Related papers (2021-05-20T07:04:10Z) - Test-Time Training for Deformable Multi-Scale Image Registration [15.523457398508263]
Deep learning-based registration approaches such as VoxelMorph have been emerging and achieve competitive performance.
We construct a test-time training for deep deformable image registration to improve the generalization ability of conventional learning-based registration model.
arXiv Detail & Related papers (2021-03-25T03:22:59Z) - Self-Supervised Pretraining Improves Self-Supervised Pretraining [83.1423204498361]
Self-supervised pretraining requires expensive and lengthy computation, large amounts of data, and is sensitive to data augmentation.
This paper explores Hierarchical PreTraining (HPT), which decreases convergence time and improves accuracy by initializing the pretraining process with an existing pretrained model.
We show HPT converges up to 80x faster, improves accuracy across tasks, and improves the robustness of the self-supervised pretraining process to changes in the image augmentation policy or amount of pretraining data.
arXiv Detail & Related papers (2021-03-23T17:37:51Z) - FDRN: A Fast Deformable Registration Network for Medical Images [3.3504365823045044]
We propose a fast convolutional neural network to boost the registration performance in both accuracy and runtime.
We show FDRN outperforms the existing state-of-the-art registration methods for brain MR images by resorting to the compact network structure and efficient learning.
arXiv Detail & Related papers (2020-11-04T14:09:51Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
arXiv Detail & Related papers (2020-05-19T06:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.