Sample-optimal learning of quantum states using gentle measurements
- URL: http://arxiv.org/abs/2505.24587v1
- Date: Fri, 30 May 2025 13:34:11 GMT
- Title: Sample-optimal learning of quantum states using gentle measurements
- Authors: Cristina Butucea, Jan Johannes, Henning Stein,
- Abstract summary: We introduce here the class of $alpha-$locally-gentle measurements ($alpha-$LGM) on a finite dimensional quantum system.<n>We prove a strong quantum Data-Processing Inequality (qDPI) on this class using an improved gentleness between relation and quantum differential privacy.<n>We propose an $alpha-$LGM called quantum Label Switch that attains these bounds.
- Score: 2.867517731896504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gentle measurements of quantum states do not entirely collapse the initial state. Instead, they provide a post-measurement state at a prescribed trace distance $\alpha$ from the initial state together with a random variable used for quantum learning of the initial state. We introduce here the class of $\alpha-$locally-gentle measurements ($\alpha-$LGM) on a finite dimensional quantum system which are product measurements on product states and prove a strong quantum Data-Processing Inequality (qDPI) on this class using an improved relation between gentleness and quantum differential privacy. We further show a gentle quantum Neyman-Pearson lemma which implies that our qDPI is asymptotically optimal (for small $\alpha$). This inequality is employed to show that the necessary number of quantum states for prescribed accuracy $\epsilon$ is of order $1/(\epsilon^2 \alpha^2)$ for both quantum tomography and quantum state certification. Finally, we propose an $\alpha-$LGM called quantum Label Switch that attains these bounds. It is a general implementable method to turn any two-outcome measurement into an $\alpha-$LGM.
Related papers
- Shallow quantum circuit for generating O(1)-entangled approximate state designs [6.161617062225404]
We find a new ensemble of quantum states that serve as an $epsilon$-approximate state $t$-design while possessing extremely low entanglement, magic, and coherence.<n>These resources can reach their theoretical lower bounds, $Omega(log (t/epsilon))$, which are also proven in this work.<n>A class of quantum circuits proposed in our work offers reduced cost for classical simulation of random quantum states.
arXiv Detail & Related papers (2025-07-23T18:56:19Z) - Pauli measurements are not optimal for single-copy tomography [34.83118849281207]
We prove a stronger upper bound of $O(frac10Nepsilon2)$ and a lower bound of $Omega(frac9.118Nepsilon2)$.<n>This demonstrates the first known separation between Pauli measurements and structured POVMs.
arXiv Detail & Related papers (2025-02-25T13:03:45Z) - Purest Quantum State Identification [13.974066377698044]
We design methods for identifying the purest one within $K$ unknown $n$-qubit quantum states using $N$ samples.<n>This framework provides concrete design principles for overcoming sampling bottlenecks in quantum technologies.
arXiv Detail & Related papers (2025-02-20T07:42:16Z) - Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.<n>We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.<n>We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - Provable learning of quantum states with graphical models [4.004283689898333]
We show that certain quantum states can be learned with a sample complexity textitexponentially better than naive tomography.
Our results allow certain quantum states to be learned with a sample complexity textitexponentially better than naive tomography.
arXiv Detail & Related papers (2023-09-17T10:36:24Z) - Fast Quantum Algorithms for Trace Distance Estimation [8.646488471216262]
We propose efficient quantum algorithms for estimating the trace distance within additive error $varepsilon$ between mixed quantum states of rank $r$.
We show that the decision version of low-rank trace distance estimation is $mathsfBQP$-complete.
arXiv Detail & Related papers (2023-01-17T10:16:14Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient Verification of Anticoncentrated Quantum States [0.38073142980733]
I present a novel method for estimating the fidelity $F(mu,tau)$ between a preparable quantum state $mu$ and a classically specified target state $tau$.
I also present a more sophisticated version of the method, which uses any efficiently preparable and well-characterized quantum state as an importance sampler.
arXiv Detail & Related papers (2020-12-15T18:01:11Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.