論文の概要: A condensing approach to multiple shooting neural ordinary differential equation
- arxiv url: http://arxiv.org/abs/2506.00724v1
- Date: Sat, 31 May 2025 21:51:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.211507
- Title: A condensing approach to multiple shooting neural ordinary differential equation
- Title(参考訳): 多重シューティングニューラル常微分方程式の凝縮法
- Authors: Siddharth Prabhu, Srinivas Rangarajan, Mayuresh Kothare,
- Abstract要約: 多重撮影は常微分方程式のパラメータ推定手法である。
次に、前回の軌跡の終端と次の軌跡の始点とのシューティングギャップを取り除くために、等式制約を適用する。
- 参考スコア(独自算出の注目度): 0.046816616030963334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple-shooting is a parameter estimation approach for ordinary differential equations. In this approach, the trajectory is broken into small intervals, each of which can be integrated independently. Equality constraints are then applied to eliminate the shooting gap between the end of the previous trajectory and the start of the next trajectory. Unlike single-shooting, multiple-shooting is more stable, especially for highly oscillatory and long trajectories. In the context of neural ordinary differential equations, multiple-shooting is not widely used due to the challenge of incorporating general equality constraints. In this work, we propose a condensing-based approach to incorporate these shooting equality constraints while training a multiple-shooting neural ordinary differential equation (MS-NODE) using first-order optimization methods such as Adam.
- Abstract(参考訳): 多重撮影は常微分方程式のパラメータ推定手法である。
このアプローチでは、軌道は小さな間隔に分割され、それぞれを独立に積分することができる。
次に、前回の軌跡の終端と次の軌跡の始点とのシューティングギャップを取り除くために、等式制約を適用する。
単発撮影とは異なり、多重撮影はより安定しており、特に高い振動と長い軌道に対してである。
ニューラル常微分方程式の文脈では、一般的な等式制約を組み込むことの難しさから、多重撮影は広くは使われない。
本研究では、Adamのような一階最適化手法を用いて、多重シューティングニューラル常微分方程式(MS-NODE)を訓練しながら、これらの撮影平等制約を組み込むための凝縮型アプローチを提案する。
関連論文リスト
- Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints [49.76332265680669]
本稿では、目的関数と制約関数の両方が弱凸である問題の重要な部分集合について検討する。
既存の手法では、収束速度の遅さや二重ループ設計への依存など、しばしば制限に直面している。
これらの課題を克服するために,新しい単一ループペナルティに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-21T17:15:48Z) - Amortized Reparametrization: Efficient and Scalable Variational
Inference for Latent SDEs [3.2634122554914002]
本稿では,データ量,時系列の総長さ,近似微分方程式の剛性と独立にスケールする時間とメモリコストで潜在微分方程式を推定する問題を考察する。
これは、メモリコストが一定であるにもかかわらず、近似微分方程式の剛性に大きく依存する時間複雑性を持つ遅延微分方程式を推論する典型的な方法とは対照的である。
論文 参考訳(メタデータ) (2023-12-16T22:27:36Z) - Comparison of Single- and Multi- Objective Optimization Quality for
Evolutionary Equation Discovery [77.34726150561087]
進化的微分方程式の発見は、より優先順位の低い方程式を得るための道具であることが証明された。
提案した比較手法は、バーガーズ方程式、波動方程式、コルテヴェーグ・ド・ブリーズ方程式といった古典的なモデル例で示される。
論文 参考訳(メタデータ) (2023-06-29T15:37:19Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Locally Regularized Neural Differential Equations: Some Black Boxes Were
Meant to Remain Closed! [3.222802562733787]
ニューラル微分方程式のような暗黙の層深層学習技術は重要なモデリングフレームワークとなっている。
パフォーマンスとトレーニング時間をトレードオフする2つのサンプリング戦略を開発します。
本手法は,関数評価を0.556-0.733xに削減し,予測を1.3-2xに高速化する。
論文 参考訳(メタデータ) (2023-03-03T23:31:15Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Gradient Backpropagation Through Combinatorial Algorithms: Identity with
Projection Works [20.324159725851235]
ゼロあるいは未定義の解法に対する意味のある置き換えは、効果的な勾配に基づく学習に不可欠である。
本稿では, 離散解空間の幾何学を応用して, 後方パス上の負の同一性として処理する原理的手法を提案する。
論文 参考訳(メタデータ) (2022-05-30T16:17:09Z) - Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution
Differential Equations [83.3201889218775]
広く使われている1次サドル点最適化法は、帰納的導出時に同一の連続時間常微分方程式(ODE)を導出する。
しかし、これらの方法の収束特性は、単純な双線型ゲームでさえ質的に異なる。
いくつかのサドル点最適化法のための微分方程式モデルの設計に流体力学の研究フレームワークを採用する。
論文 参考訳(メタデータ) (2021-12-27T18:31:34Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Stochastic gradient algorithms from ODE splitting perspective [0.0]
我々は、ODEの近似解の分割スキームに遡る最適化に関する異なる見解を示す。
そこで本研究では, ODE の勾配一階分割方式と降下アプローチの関連性について述べる。
我々は、機械学習アプリケーションにインスパイアされた分割の特殊なケースを考察し、それに対するグローバルスプリッティングエラーに新たな上限を導出する。
論文 参考訳(メタデータ) (2020-04-19T22:45:32Z) - Learning To Solve Differential Equations Across Initial Conditions [12.66964917876272]
多くのニューラルネットワークに基づく偏微分方程式解法が定式化され、古典的解法よりも性能が同等であり、場合によってはさらに優れている。
本研究では,任意の初期条件に対する偏微分方程式の解を条件付き確率分布の学習として近似する問題を提案する。
論文 参考訳(メタデータ) (2020-03-26T21:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。