論文の概要: Machine-Learned Sampling of Conditioned Path Measures
- arxiv url: http://arxiv.org/abs/2506.01904v1
- Date: Mon, 02 Jun 2025 17:25:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.331851
- Title: Machine-Learned Sampling of Conditioned Path Measures
- Title(参考訳): 条件付き経路対策の機械学習サンプリング
- Authors: Qijia Jiang, Reuben Cohn-Gordon,
- Abstract要約: 本稿では,一般的な事前プロセス下での後方経路測度からサンプリングするアルゴリズムを提案する。
得られたアルゴリズムは理論的に接地されており、ニューラルネットワークとシームレスに統合して、対象の軌道アンサンブルを学習することができる。
- 参考スコア(独自算出の注目度): 11.806419293084343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose algorithms for sampling from posterior path measures $P(C([0, T], \mathbb{R}^d))$ under a general prior process. This leverages ideas from (1) controlled equilibrium dynamics, which gradually transport between two path measures, and (2) optimization in $\infty$-dimensional probability space endowed with a Wasserstein metric, which can be used to evolve a density curve under the specified likelihood. The resulting algorithms are theoretically grounded and can be integrated seamlessly with neural networks for learning the target trajectory ensembles, without access to data.
- Abstract(参考訳): 我々は、一般的な事前プロセスの下で、後続経路測度$P(C([0, T], \mathbb{R}^d))$からサンプリングするアルゴリズムを提案する。
これは(1) 2つの経路測度の間で徐々に輸送される制御された平衡力学と(2)ワッサーシュタイン計量によって与えられる$\infty$-次元確率空間の最適化のアイデアを利用する。
結果のアルゴリズムは理論的に接地されており、データにアクセスすることなく、ターゲットの軌道アンサンブルを学習するためのニューラルネットワークとシームレスに統合することができる。
関連論文リスト
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Normalizing flows as approximations of optimal transport maps via linear-control neural ODEs [49.1574468325115]
我々は、絶対連続測度$mu,nuinmathcalP(mathbbRn)$間の$Wimat$-optimal transport map Tを線形制御ニューラルネットワークのフローとして回収する問題を考える。
論文 参考訳(メタデータ) (2023-11-02T17:17:03Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - GeONet: a neural operator for learning the Wasserstein geodesic [13.468026138183623]
本稿では、初期分布と終端分布の入力対から2つのエンドポイント分布を接続するワッサーシュタイン測地線への非線形マッピングを学習するメッシュ不変なディープニューラルネットワークであるGeONetを提案する。
シミュレーション例では,GeONet が標準 OT ソルバと同等の精度で,MNIST データセットに比較して,予測段階の計算コストを桁違いに大幅に削減することを示した。
論文 参考訳(メタデータ) (2022-09-28T21:55:40Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
高次元の2つの確率分布の間のワッサーシュタイン測地線を計算するための新しい定式化と学習戦略を提案する。
ラグランジュ乗算器の手法を最適輸送(OT)問題の動的定式化に適用することにより、サドル点がワッサーシュタイン測地線であるミニマックス問題を導出する。
次に、深層ニューラルネットワークによる関数のパラメータ化を行い、トレーニングのためのサンプルベースの双方向学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-02-05T04:25:28Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
ワッサーシュタイン・バリセンターは、最適輸送に基づく確率測度の重み付き平均の幾何学的概念を提供する。
本稿では,Wasserstein-2 バリセンタのサンプルアクセスを演算するスケーラブルなアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-02T21:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。