Adiabaticity violation under arbitrarily slow evolution
- URL: http://arxiv.org/abs/2506.02681v1
- Date: Tue, 03 Jun 2025 09:29:58 GMT
- Title: Adiabaticity violation under arbitrarily slow evolution
- Authors: Oubo You, Zhaoqi Jiang, Jinhui Shi, Qing Dai, Chunying Guan, Shuang Zhang,
- Abstract summary: We show that adiabaticity can be violated even in arbitrarily slow processes.<n>This discovery reshapes our understanding of quantum evolution and holds potential for quantum computing, topological physics, and photonic technologies.
- Score: 1.1863957256000357
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The quantum adiabatic theorem, a cornerstone of quantum mechanics, asserts that a gapped quantum system remains in its instantaneous eigenstate during sufficiently slow evolution, provided no resonances occur. Here we challenge this principle and show that adiabaticity can be violated even in arbitrarily slow processes. We introduce two new parameters, Instantaneous Transition Accumulation (ITA) and Instantaneous Transition Probability (ITP), to redefine the framework of adiabatic evolution. These parameters, grounded in cross-Berry connections and eigenstate amplitudes, reveal the dynamic and geometric factors governing adiabaticity. Using a new Phase Difference Manipulation (PDM) method, we control ITP and ITA to induce adiabaticity violation in a Landau-Zener (LZ) process. We experimentally demonstrate this counterintuitive phenomenon in a photonic waveguide system, where a slow LZ process defies adiabaticity, switching energy levels despite a fivefold slower evolution speed than a conventional adiabatic process. This discovery reshapes our understanding of quantum evolution and holds potential for quantum computing, topological physics, and photonic technologies.
Related papers
- Error-resilient Reversal of Quantum Chaotic Dynamics Enabled by Scramblons [16.71116343065157]
arrow of time in quantum many-body systems stems from Hamiltonian evolution to scramble quantum information and increase entanglement.<n>We study the structure of quantum information scrambling and chaotic dynamics.<n>Our results push the fundamental limits of dynamical revers of complex quantum systems.
arXiv Detail & Related papers (2025-06-24T18:00:05Z) - Time-dependent Neural Galerkin Method for Quantum Dynamics [42.81677042059531]
We introduce a classical computational method for quantum dynamics that relies on a global-in-time variational principle.<n>Our scheme computes the entire state trajectory over a finite time window by minimizing a loss function that enforces the Schr"odinger's equation.<n>We showcase the method by simulating global quantum quenches in the paradigmatic Transverse-Field Ising model in both 1D and 2D.
arXiv Detail & Related papers (2024-12-16T13:48:54Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
arXiv Detail & Related papers (2024-03-12T09:37:22Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum metrology with boundary time crystals [0.0]
We show that a transition from a symmetry unbroken into a boundary time crystal phase reveals quantum-enhanced sensitivity quantified through quantum Fisher information.
Our scheme is indeed a demonstration of harnessing decoherence for achieving quantum-enhanced sensitivity.
arXiv Detail & Related papers (2023-01-05T15:15:38Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Realizing quantum speed limit in open system with a PT-symmetric
trapped-ion qubit [8.108489903565584]
We experimentally confirm the proposal in a single dissipative qubit system.
We find that the evolution time of its reversal operation increases with the increasing dissipation intensity.
arXiv Detail & Related papers (2022-06-02T09:02:47Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Shortcuts to adiabatic population inversion via time-rescaling:
stability and thermodynamic cost [0.0]
We study the problem of speeding up the population inversion of a two-level quantum system.
The fidelity of the dynamics versus systematic errors in the control parameters are shown to be comparable with other STA schemes.
arXiv Detail & Related papers (2022-04-29T20:27:02Z) - Accelerating the approach of dissipative quantum spin systems towards
stationarity through global spin rotations [0.0]
We consider open quantum systems governed by a time-independent Markovian Lindblad Master equation.
Such systems approach their stationary state on a timescale that is determined by the spectral gap of the generator of the Master equation dynamics.
We show that even far simpler transformations constructed by a global unitary spin rotation allow to exponentially speed up relaxation.
arXiv Detail & Related papers (2022-04-11T18:00:34Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.