Graph Neural Networks for Jamming Source Localization
- URL: http://arxiv.org/abs/2506.03196v2
- Date: Wed, 18 Jun 2025 11:36:11 GMT
- Title: Graph Neural Networks for Jamming Source Localization
- Authors: Dania Herzalla, Willian T. Lunardi, Martin Andreoni,
- Abstract summary: We introduce the first application of graph-based learning for jamming source localization.<n>Our approach integrates structured node representations that encode local and global signal aggregation.<n>Results demonstrate that our novel graph-based learning framework significantly outperforms established localization baselines.
- Score: 0.23408308015481666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based learning provides a powerful framework for modeling complex relational structures; however, its application within the domain of wireless security remains significantly underexplored. In this work, we introduce the first application of graph-based learning for jamming source localization, addressing the imminent threat of jamming attacks in wireless networks. Unlike geometric optimization techniques that struggle under environmental uncertainties and dense interference, we reformulate the localization as an inductive graph regression task. Our approach integrates structured node representations that encode local and global signal aggregation, ensuring spatial coherence and adaptive signal fusion. To enhance robustness, we incorporate an attention-based \ac{GNN} that adaptively refines neighborhood influence and introduces a confidence-guided estimation mechanism that dynamically balances learned predictions with domain-informed priors. We evaluate our approach under complex \ac{RF} environments with various sampling densities, network topologies, jammer characteristics, and signal propagation conditions, conducting comprehensive ablation studies on graph construction, feature selection, and pooling strategies. Results demonstrate that our novel graph-based learning framework significantly outperforms established localization baselines, particularly in challenging scenarios with sparse and obfuscated signal information. Our code is available at https://github.com/tiiuae/gnn-jamming-source-localization.
Related papers
- Transfer Learning Under High-Dimensional Network Convolutional Regression Model [20.18595334666282]
We propose a high-dimensional transfer learning framework based on network convolutional regression ( NCR)<n>Our methodology includes a two-step transfer learning algorithm that addresses domain shift between source and target networks.<n> Empirical evaluations, including simulations and a real-world application using Sina Weibo data, demonstrate substantial improvements in prediction accuracy.
arXiv Detail & Related papers (2025-04-28T16:52:28Z) - Depth-Adaptive Graph Neural Networks via Learnable Bakry-'Emery Curvature [7.2716257100195385]
Graph Neural Networks (GNNs) have demonstrated strong representation learning capabilities for graph-based tasks.<n>Recent advances on GNNs leverage geometric properties, such as curvature, to enhance its representation capabilities.<n>We propose integrating Bakry-'Emery curvature, which captures both structural and task-driven aspects of information propagation.
arXiv Detail & Related papers (2025-03-03T00:48:41Z) - Rank and Align: Towards Effective Source-free Graph Domain Adaptation [16.941755478093153]
Graph neural networks (GNNs) have achieved impressive performance in graph domain adaptation.
However, extensive source graphs could be unavailable in real-world scenarios due to privacy and storage concerns.
We introduce a novel GNN-based approach called Rank and Align (RNA), which ranks graph similarities with spectral seriation for robust semantics learning.
arXiv Detail & Related papers (2024-08-22T08:00:50Z) - GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
We propose an adaptive Graph Attention Sampling with the Edges Fusion framework to solve vehicle routing problems.
Our proposed model outperforms the existing methods by 2.08%-6.23% and shows stronger generalization ability.
arXiv Detail & Related papers (2024-05-21T03:33:07Z) - Attentional Graph Neural Network Is All You Need for Robust Massive Network Localization [26.85290529046327]
We design Graph Neural Networks (GNNs) with attention mechanisms to tackle an important yet challenging nonlinear regression problem: massive network localization.<n>We first review our previous network localization method based on Graph Convolutional Network (GCN)<n>As an extension, we propose a specially designed Attentional GNN (AGNN) model to resolve the sensitive thresholding issue of the GCN-based method.
arXiv Detail & Related papers (2023-11-28T15:05:13Z) - Learning Decentralized Traffic Signal Controllers with Multi-Agent Graph
Reinforcement Learning [42.175067773481416]
We design a new decentralized control architecture with improved environmental observability to capture the spatial-temporal correlation.
Specifically, we first develop a topology-aware information aggregation strategy to extract correlation-related information from unstructured data gathered in the road network.
A diffusion convolution module is developed, forming a new MARL algorithm, which endows agents with the capabilities of graph learning.
arXiv Detail & Related papers (2023-11-07T06:43:15Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Position-aware Structure Learning for Graph Topology-imbalance by
Relieving Under-reaching and Over-squashing [67.83086131278904]
Topology-imbalance is a graph-specific imbalance problem caused by the uneven topology positions of labeled nodes.
We propose a novel position-aware graph structure learning framework named PASTEL.
Our key insight is to enhance the connectivity of nodes within the same class for more supervision information.
arXiv Detail & Related papers (2022-08-17T14:04:21Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
We design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs)
We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method.
arXiv Detail & Related papers (2020-11-05T03:38:36Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.