A combined Machine Learning and Finite Element Modelling tool for the surgical planning of craniosynostosis correction
- URL: http://arxiv.org/abs/2506.03202v1
- Date: Mon, 02 Jun 2025 17:11:50 GMT
- Title: A combined Machine Learning and Finite Element Modelling tool for the surgical planning of craniosynostosis correction
- Authors: Itxasne Antúnez Sáenz, Ane Alberdi Aramendi, David Dunaway, Juling Ong, Lara Deliège, Amparo Sáenz, Anita Ahmadi Birjandi, Noor UI Owase Jeelani, Silvia Schievano, Alessandro Borghi,
- Abstract summary: This research aims to develop a real-time prediction tool for the surgical outcome of patients.<n>The proposed methodology involves creating personalised synthetic skulls based on 3D photographs.<n>A machine learning surrogate model is employed to achieve the desired surgical outcome.
- Score: 31.874825130479174
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Craniosynostosis is a medical condition that affects the growth of babies' heads, caused by an early fusion of cranial sutures. In recent decades, surgical treatments for craniosynostosis have significantly improved, leading to reduced invasiveness, faster recovery, and less blood loss. At Great Ormond Street Hospital (GOSH), the main surgical treatment for patients diagnosed with sagittal craniosynostosis (SC) is spring assisted cranioplasty (SAC). This procedure involves a 15x15 mm2 osteotomy, where two springs are inserted to induce distraction. Despite the numerous advantages of this surgical technique for patients, the outcome remains unpredictable due to the lack of efficient preoperative planning tools. The surgeon's experience and the baby's age are currently relied upon to determine the osteotomy location and spring selection. Previous tools for predicting the surgical outcome of SC relied on finite element modeling (FEM), which involved computed tomography (CT) imaging and required engineering expertise and lengthy calculations. The main goal of this research is to develop a real-time prediction tool for the surgical outcome of patients, eliminating the need for CT scans to minimise radiation exposure during preoperative planning. The proposed methodology involves creating personalised synthetic skulls based on three-dimensional (3D) photographs, incorporating population average values of suture location, skull thickness, and soft tissue properties. A machine learning (ML) surrogate model is employed to achieve the desired surgical outcome. The resulting multi-output support vector regressor model achieves a R2 metric of 0.95 and MSE and MAE below 0.13. Furthermore, in the future, this model could not only simulate various surgical scenarios but also provide optimal parameters for achieving a maximum cranial index (CI).
Related papers
- SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery [44.119171920037196]
We develop and evaluate machine learning (ML) models for predicting length of stay (LOS) in elective spine surgery.<n>We compare traditional ML models with our developed model, SurgeryLSTM, a masked bidirectional long short-term memory (BiLSTM) with an attention.<n>Performance was evaluated using the coefficient of determination (R2) and key predictors were identified using explainable AI.
arXiv Detail & Related papers (2025-07-15T01:18:28Z) - A Lightweight Optimization Framework for Estimating 3D Brain Tumor Infiltration [9.89718764056655]
Glioblastoma is the most aggressive primary brain tumor.<n>Current radiotherapy planning employs a uniform 15 mm margin around the resection cavity, failing to capture patient-specific tumor spread.<n>We propose a lightweight, rapid, and robust optimization framework that estimates the 3D tumor concentration by fitting it to MRI tumor segmentations.
arXiv Detail & Related papers (2024-12-18T12:58:38Z) - Autonomous Path Planning for Intercostal Robotic Ultrasound Imaging Using Reinforcement Learning [45.5123007404575]
The US examination for thoracic application is still challenging due to the acoustic shadow cast by the subcutaneous rib cage.
We present a reinforcement learning approach for planning scanning paths between ribs to monitor changes in lesions on internal organs.
Experiments have been carried out on unseen CTs with randomly defined single or multiple scanning targets.
arXiv Detail & Related papers (2024-04-15T16:52:53Z) - Latent Disentanglement in Mesh Variational Autoencoders Improves the
Diagnosis of Craniofacial Syndromes and Aids Surgical Planning [42.017495658167334]
We will discuss the application of the Swap Disentangled Variational Autoencoder with relevance to Crouzon, Apert and Muenke syndromes.
By manipulating specific parameters of the generative model, it is also possible to simulate the outcome of a range of craniofacial surgical procedures.
arXiv Detail & Related papers (2023-09-05T13:16:53Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
We propose an intraoperative planning approach for robotic spine surgery that leverages real-time observation for drill path planning based on Safe Deep Reinforcement Learning (DRL)
Our approach was capable of achieving 90% bone penetration with respect to the gold standard (GS) drill planning.
arXiv Detail & Related papers (2023-05-09T11:42:53Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Comprehensive Validation of Automated Whole Body Skeletal Muscle,
Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition
Analysis: Towards Extended Body Composition [0.6176955945418618]
Powerful tools of artificial intelligence such as deep learning are making it feasible now to segment the entire 3D image and generate accurate measurements of all internal anatomy.
These will enable the overcoming of the severe bottleneck that existed previously, namely, the need for manual segmentation.
These measurements were hitherto unavailable thereby limiting the field to a very small and limited subset.
arXiv Detail & Related papers (2021-06-01T17:30:45Z) - DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and
Surgical Margin via Contrast-Enhanced CT Imaging [26.162788846435365]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and carries a dismal prognosis.
We propose a novel deep neural network for the survival prediction of resectable PDAC patients, named as 3D Contrast-Enhanced Convolutional Long Short-Term Memory network(CE-ConvLSTM)
We present a multi-task CNN to accomplish both tasks of outcome and margin prediction where the network benefits from learning the tumor resection margin related features to improve survival prediction.
arXiv Detail & Related papers (2020-08-26T22:51:24Z) - Self-supervised Skull Reconstruction in Brain CT Images with
Decompressive Craniectomy [13.695197074035928]
We propose a deep learning based method to reconstruct the skull defect removed during craniectomy performed after TBI.
This reconstruction is useful in multiple scenarios, e.g. to support the creation of cranioplasty plates.
arXiv Detail & Related papers (2020-07-07T22:38:38Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.