What Makes Treatment Effects Identifiable? Characterizations and Estimators Beyond Unconfoundedness
- URL: http://arxiv.org/abs/2506.04194v2
- Date: Mon, 30 Jun 2025 17:21:41 GMT
- Title: What Makes Treatment Effects Identifiable? Characterizations and Estimators Beyond Unconfoundedness
- Authors: Yang Cai, Alkis Kalavasis, Katerina Mamali, Anay Mehrotra, Manolis Zampetakis,
- Abstract summary: We study general conditions that enable the identification of the average treatment effect.<n>We provide an interpretable condition that is sufficient and necessary for the identification of ATE.<n>We prove that ATE can be identified in regimes that prior works could not capture.
- Score: 14.699342649039052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the widely used estimators of the average treatment effect (ATE) in causal inference rely on the assumptions of unconfoundedness and overlap. Unconfoundedness requires that the observed covariates account for all correlations between the outcome and treatment. Overlap requires the existence of randomness in treatment decisions for all individuals. Nevertheless, many types of studies frequently violate unconfoundedness or overlap, for instance, observational studies with deterministic treatment decisions - popularly known as Regression Discontinuity designs - violate overlap. In this paper, we initiate the study of general conditions that enable the identification of the average treatment effect, extending beyond unconfoundedness and overlap. In particular, following the paradigm of statistical learning theory, we provide an interpretable condition that is sufficient and necessary for the identification of ATE. Moreover, this condition also characterizes the identification of the average treatment effect on the treated (ATT) and can be used to characterize other treatment effects as well. To illustrate the utility of our condition, we present several well-studied scenarios where our condition is satisfied and, hence, we prove that ATE can be identified in regimes that prior works could not capture. For example, under mild assumptions on the data distributions, this holds for the models proposed by Tan (2006) and Rosenbaum (2002), and the Regression Discontinuity design model introduced by Thistlethwaite and Campbell (1960). For each of these scenarios, we also show that, under natural additional assumptions, ATE can be estimated from finite samples. We believe these findings open new avenues for bridging learning-theoretic insights and causal inference methodologies, particularly in observational studies with complex treatment mechanisms.
Related papers
- Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap [1.437446768735628]
Conditional Monge Gap learns OT maps conditionally on arbitrary co variables.<n>We find that our conditional models achieve results comparable to condition-specific state-of-the-art on scRNA-seq.<n>We also narrow the gap between structure-based and effect-based drug representations, suggesting a promising path to the successful prediction of perturbation effects for unseen treatments.
arXiv Detail & Related papers (2025-04-11T07:51:33Z) - Doubly robust identification of treatment effects from multiple environments [22.228179404621482]
We propose RAMEN, an algorithm that produces unbiased treatment effect estimates without the need to know or learn the underlying causal graph.<n> RAMEN achieves doubly robust identification: it can identify the treatment effect whenever the causal parents of the treatment or those of the outcome are observed.
arXiv Detail & Related papers (2025-03-18T17:33:10Z) - Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments [67.80453452949303]
Estimating the conditional average treatment effect (CATE) from observational data is relevant for many applications such as personalized medicine.
Here, we focus on the widespread setting where the observational data come from multiple environments.
We propose different model-agnostic learners (so-called meta-learners) to estimate the bounds that can be used in combination with arbitrary machine learning models.
arXiv Detail & Related papers (2024-06-04T16:31:43Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
We develop novel one-step and targeted minimum loss-based estimators for both the average treatment effect and the average treatment effect on the treated under front-door assumptions.<n>Our estimators are built on multiple parameterizations of the observed data distribution, including approaches that avoid mediator density entirely.<n>We show how these constraints can be leveraged to improve the efficiency of causal effect estimators.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
Causal effects in populations are often estimated using observational datasets.
We propose a meta-algorithm that attempts to reject observational estimates that are biased.
arXiv Detail & Related papers (2022-09-27T21:47:23Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Robust and Agnostic Learning of Conditional Distributional Treatment Effects [44.31792000298105]
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a class of problems.<n>Our method is model-agnostic in that it can provide the best projection of CDTE onto the regression model class.<n>We investigate the behavior of our proposal in simulations, as well as in a case study of 401(k) eligibility effects on wealth.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - On Testability of the Front-Door Model via Verma Constraints [7.52579126252489]
Front-door criterion can be used to identify and compute causal effects despite unmeasured confounders.
Key assumptions -- the existence of a variable that fully mediates the effect of the treatment on the outcome, and which simultaneously does not suffer from similar issues of confounding -- are often deemed implausible.
We show that under mild conditions involving an auxiliary variable, the assumptions encoded in the front-door model may be tested via generalized equality constraints.
arXiv Detail & Related papers (2022-03-01T00:38:29Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
We propose a conformal inference-based approach that can produce reliable interval estimates for counterfactuals and individual treatment effects.
Existing methods suffer from a significant coverage deficit even in simple models.
arXiv Detail & Related papers (2020-06-11T01:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.