論文の概要: "We need to avail ourselves of GenAI to enhance knowledge distribution": Empowering Older Adults through GenAI Literacy
- arxiv url: http://arxiv.org/abs/2506.06225v1
- Date: Fri, 06 Jun 2025 16:38:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 21:34:56.780651
- Title: "We need to avail ourselves of GenAI to enhance knowledge distribution": Empowering Older Adults through GenAI Literacy
- Title(参考訳): 「知識の流通を促進するためには、GenAIの活用が必要」--GenAIリテラシーによる高齢者の力強化
- Authors: Eunhye Grace Ko, Shaini Nanayakkara, Earl W. Huff Jr,
- Abstract要約: 高齢の成人はしばしば、新興技術の採用に関するより大きな予約を示す。
本研究では,GenAIリテラシーを高齢者に提供するための戦略を検討する。
定量的データは、AIリテラシーの改善傾向を示しているが、統計的には重要ではなかった。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As generative AI (GenAI) becomes increasingly widespread, it is crucial to equip users, particularly vulnerable populations such as older adults (65 and older), with the knowledge to understand its benefits and potential risks. Older adults often exhibit greater reservations about adopting emerging technologies and require tailored literacy support. Using a mixed methods approach, this study examines strategies for delivering GenAI literacy to older adults through a chatbot named Litti, evaluating its impact on their AI literacy (knowledge, safety, and ethical use). The quantitative data indicated a trend toward improved AI literacy, though the results were not statistically significant. However, qualitative interviews revealed diverse levels of familiarity with generative AI and a strong desire to learn more. Findings also show that while Litti provided a positive learning experience, it did not significantly enhance participants' trust or sense of safety regarding GenAI. This exploratory case study highlights the challenges and opportunities in designing AI literacy education for the rapidly growing older adult population.
- Abstract(参考訳): ジェネレーティブAI(GenAI)が普及するにつれて、ユーザー、特に高齢者(65歳以上)のような脆弱な人口に、そのメリットと潜在的なリスクを理解する知識を持たせることが不可欠である。
高齢者はしばしば、新興技術の採用に関してより大きな予約を示し、適切なリテラシー支援を必要としている。
混合手法を用いて、リッティというチャットボットを通じて高齢者にGenAIリテラシーを提供する戦略を検証し、そのAIリテラシーへの影響(知識、安全性、倫理的利用)を評価する。
定量的データは、AIリテラシーの改善傾向を示しているが、統計的には有意ではなかった。
しかし質的なインタビューでは、生成的AIに様々なレベルの親しみがあり、さらに学びたいという強い願望が浮かび上がった。
また,リッティは肯定的な学習経験を提供する一方で,GenAIに対する参加者の信頼感や安心感を著しく向上させるには至らなかった。
この調査ケーススタディは、急速に成長する成人のためのAIリテラシー教育を設計する上での課題と機会を強調している。
関連論文リスト
- Generative AI in Education: Student Skills and Lecturer Roles [0.0]
本研究の目的は、学生がGenAIを効果的に活用するために必要な重要な能力を特定し、評価することである。
文献レビューでは、AIリテラシー、批判的思考、倫理的AIプラクティスが最も重要視されている、GenAIエンゲージメントに必要な14の学生スキルが特定された。
講師戦略の研究において,GenAI統合とカリキュラムデザインが最も重視される6つの重要な領域を特定した。
論文 参考訳(メタデータ) (2025-04-28T10:58:30Z) - Synergizing Self-Regulation and Artificial-Intelligence Literacy Towards Future Human-AI Integrative Learning [92.34299949916134]
自己制御学習(SRL)と人工知能(AI)リテラシーは、人間とAIの対話学習を成功させる上で重要な能力となっている。
本研究では,4つの学習グループを明らかにするクラスタリング手法を用いて,1,704人の中国人大学生のデータを分析した。
論文 参考訳(メタデータ) (2025-03-31T13:41:21Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
本研究は, 生産型AIの活用と展望について, 工学教育者を対象にした調査から得られた知見を報告する。
我々は、GenAIの利用と快適性、GenAIに対する全体的な視点、教育、学習、研究にGenAIを使うことの課題と潜在的害について質問し、彼らの教室でのGenAIの使用と統合に対するアプローチが、GenAIの経験とそれに対する認識に影響を与えているかどうかを検討した。
論文 参考訳(メタデータ) (2025-02-01T21:29:53Z) - SoK: Watermarking for AI-Generated Content [112.9218881276487]
ウォーターマーキングスキームは、AI生成コンテンツに隠された信号を埋め込んで、信頼性の高い検出を可能にする。
透かしは、誤情報や偽造と戦ってAIの安全性と信頼性を高める上で重要な役割を果たす。
本研究の目的は、研究者が透かし法や応用の進歩を指導し、GenAIの幅広い意味に対処する政策立案者を支援することである。
論文 参考訳(メタデータ) (2024-11-27T16:22:33Z) - Measuring Human Contribution in AI-Assisted Content Generation [66.06040950325969]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
我々は、中核的なプログラミングコースでGenAIを効果的に活用するために、学生を指導するフレームワーク「AI-Lab」を紹介した。
GenAIの誤りを特定し、修正することで、学生は学習プロセスを充実させる。
教育者にとって、AI-Labは、学習経験におけるGenAIの役割に対する学生の認識を探索するメカニズムを提供する。
論文 参考訳(メタデータ) (2023-08-23T17:20:37Z) - The AI generation gap: Are Gen Z students more interested in adopting
generative AI such as ChatGPT in teaching and learning than their Gen X and
Millennial Generation teachers? [0.0]
Gen Zの学生は一般的に、生成AI(GenAI)の潜在的なメリットについて楽観的だった
Gen XとGen Yの教師は、過度な信頼、倫理的、教育的な意味に関する懸念を高めた。
論文 参考訳(メタデータ) (2023-05-04T14:42:06Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。