論文の概要: A Quantum Computational Perspective on Spread Complexity
- arxiv url: http://arxiv.org/abs/2506.07257v2
- Date: Mon, 30 Jun 2025 09:25:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 19:22:02.175838
- Title: A Quantum Computational Perspective on Spread Complexity
- Title(参考訳): 拡散複雑度に関する量子計算の展望
- Authors: Cameron Beetar, Eric L Graef, Jeff Murugan, Horatiu Nastase, Hendrik J R Van Zyl,
- Abstract要約: 我々は、時間進化と重ね合わせという2つの基本的な操作から構築された回路複雑性フレームワークの制限ケースとして、拡散複雑性が出現することを示すことによって、拡散複雑性と量子回路複雑性の直接的な接続を確立する。
提案手法では,単位ゲートとビーム分割演算がターゲット状態を生成する計算装置を活用し,合成コストの最小化により,無限小時間進化限界における複雑性の拡散に収束する複雑性尺度が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We establish a direct connection between spread complexity and quantum circuit complexity by demonstrating that spread complexity emerges as a limiting case of a circuit complexity framework built from two fundamental operations: time-evolution and superposition. Our approach leverages a computational setup where unitary gates and beam-splitting operations generate target states, with the minimal cost of synthesis yielding a complexity measure that converges to spread complexity in the infinitesimal time-evolution limit. This perspective not only provides a physical interpretation of spread complexity but also offers computational advantages, particularly in scenarios where traditional methods like the Lanczos algorithm fail. We illustrate our framework with an explicit SU(2) example and discuss broader applications, including cases where return amplitudes are non-perturbative or divergent
- Abstract(参考訳): 我々は、時間進化と重ね合わせという2つの基本的な操作から構築された回路複雑性フレームワークの制限ケースとして、拡散複雑性が出現することを示すことによって、拡散複雑性と量子回路複雑性の直接的な接続を確立する。
提案手法では,単位ゲートとビーム分割演算がターゲット状態を生成する計算装置を活用し,合成コストの最小化により,無限小時間進化限界における複雑性の拡散に収束する複雑性尺度が得られた。
この観点は、拡散複雑性の物理的解釈を提供するだけでなく、特にランツォスアルゴリズムのような伝統的な手法が失敗するシナリオにおいて、計算上の優位性も提供する。
我々は、我々のフレームワークを明示的なSU(2)例で説明し、戻り振幅が摂動的でない場合や発散する場合など、より広範な応用について論じる。
関連論文リスト
- Taming Quantum Time Complexity [45.867051459785976]
時間複雑性の設定において、正確さと遠心性の両方を達成する方法を示します。
我々は、トランスデューサと呼ばれるものに基づく量子アルゴリズムの設計に新しいアプローチを採用する。
論文 参考訳(メタデータ) (2023-11-27T14:45:19Z) - The Complexity of Being Entangled [0.0]
ニールセンの量子状態複雑性へのアプローチは、一元変換の多様体上の特定のノルムで計算された測地線の長さに状態を作るのに必要な最小の量子ゲート数に関係している。
バイパーティイトシステムでは,単一サブシステムに作用するゲートがコストがかからないノルムに対応する結合複雑性について検討する。
論文 参考訳(メタデータ) (2023-11-07T19:00:02Z) - Unitary Complexity and the Uhlmann Transformation Problem [41.67228730328207]
本稿では, 単項合成問題の枠組みを導入し, 還元と単項複雑性クラスについて考察する。
このフレームワークは、ある絡み合った状態が局所的な操作によって別の状態に変換される複雑さを研究するのに使用します。
そこで我々は,多くの自然量子情報処理タスクの計算複雑性を研究するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-22T17:46:39Z) - Bounds on quantum evolution complexity via lattice cryptography [0.0]
量子論における可積分運動とカオス運動の差は、対応する進化作用素の複雑さによって表される。
ここでの複雑性は、時間依存進化作用素とユニタリ群内の原点の間の最短測地線距離として理解されている。
論文 参考訳(メタデータ) (2022-02-28T16:20:10Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
特に、状態準備および読み出しプロセスのような実装のいくつかのステップは、アルゴリズム自体の複雑さの側面を超越することができる。
本稿では、方程式の線形系と微分方程式の線形系を解くための量子アルゴリズムの完全な実装に関わる複雑性について述べる。
論文 参考訳(メタデータ) (2021-06-23T16:33:33Z) - On estimating the entropy of shallow circuit outputs [49.1574468325115]
確率分布と量子状態のエントロピーを推定することは情報処理の基本的な課題である。
本稿では,有界ファンインと非有界ファンアウトのゲートを持つ対数深度回路か定数深度回路のいずれかによって生成された分布や状態に対するエントロピー推定が,少なくともLearning with Errors問題と同程度難しいことを示す。
論文 参考訳(メタデータ) (2020-02-27T15:32:08Z) - Aspects of The First Law of Complexity [0.0]
我々は、arXiv:1903.04511で提案される最初の複雑性の法則、すなわち、ターゲット状態が摂動した際の複雑性の変動について検討する。
Nielsenの量子回路複雑性に対する幾何学的アプローチに基づいて、変動は最適回路の端にのみ依存する。
論文 参考訳(メタデータ) (2020-02-13T21:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。