論文の概要: Feasibility Study of CNNs and MLPs for Radiation Heat Transfer in 2-D Furnaces with Spectrally Participative Gases
- arxiv url: http://arxiv.org/abs/2506.08033v2
- Date: Wed, 11 Jun 2025 10:14:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 02:07:43.336841
- Title: Feasibility Study of CNNs and MLPs for Radiation Heat Transfer in 2-D Furnaces with Spectrally Participative Gases
- Title(参考訳): 分光参加ガスを用いた2次元炉におけるCNNとMLPの放射熱伝達性評価
- Authors: Axel TahmasebiMoradi, Vincent Ren, Benjamin Le-Creurer, Chetra Mang, Mouadh Yagoubi,
- Abstract要約: そこで我々は,2次元壁状領域における放射熱伝達解を近似する代理モデルを構築した。
この研究の独創性は、CNNアーキテクチャに適合するために問題(ガスと壁の特性)の入力を適応させることにある。
CNNアーキテクチャの性能は、より古典的なアーキテクチャと比較される。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aiming to reduce the computational cost of numerical simulations, a convolutional neural network (CNN) and a multi-layer perceptron (MLP) are introduced to build a surrogate model to approximate radiative heat transfer solutions in a 2-D walled domain with participative gases. The originality of this work lays in the adaptation of the inputs of the problem (gas and wall properties) in order to fit with the CNN architecture, more commonly used for image processing. Two precision datasets have been created with the classical solver, ICARUS2D, that uses the discrete transfer radiation method with the statistical narrow bands model. The performance of the CNN architecture is compared to a more classical MLP architecture in terms of speed and accuracy. Thanks to Optuna, all results are obtained using the optimized hyper parameters networks. The results show a significant speedup with industrially acceptable relative errors compared to the classical solver for both architectures. Additionally, the CNN outperforms the MLP in terms of precision and is more robust and stable to changes in hyper-parameters. A performance analysis on the dataset size of the samples have also been carried out to gain a deeper understanding of the model behavior.
- Abstract(参考訳): 数値シミュレーションの計算コストを削減するため、畳み込みニューラルネットワーク(CNN)と多層パーセプトロン(MLP)を導入し、参加ガスを持つ2次元壁状領域における放射熱伝達溶液を近似するサロゲートモデルを構築した。
この研究の独創性は、より一般的に画像処理に使用されるCNNアーキテクチャに適合するために、問題の入力(ガスと壁の特性)を適応させることにある。
2つの精度データセットが古典的解法ICARUS2Dで作成され、これは統計的狭帯域モデルを用いた離散移動放射法を用いている。
CNNアーキテクチャの性能は、より古典的なMLPアーキテクチャと比較される。
Optunaのおかげで、最適化されたハイパーパラメータネットワークを使って、すべての結果が得られる。
その結果,両アーキテクチャの古典的解法と比較して,産業的に許容される相対誤差が著しく向上した。
さらに、CNNはMLPよりも精度が高く、ハイパーパラメータの変化に対してより堅牢で安定である。
サンプルのデータセットサイズに関する性能解析も行っており、モデルの振る舞いをより深く理解している。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Temperature Distribution Prediction in Laser Powder Bed Fusion using Transferable and Scalable Graph Neural Networks [0.0]
本研究では, レーザ粉体融合プロセスにおける熱力学のシミュレーションにグラフニューラルネットワーク(GNN)を用いた新しい予測モデルを提案する。
提案モデルでは,L-PBFにおける熱伝達過程の複雑さを計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-07-18T18:14:47Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
本研究では,ラットおよびヒト脳のデータセット上でのNLLS,RNN法および多層パーセプトロン(MLP)の性能を評価する。
提案手法は,NLLSよりも計算時間を大幅に短縮できるという利点を示した。
論文 参考訳(メタデータ) (2022-03-01T16:33:15Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
論文 参考訳(メタデータ) (2021-09-04T08:43:19Z) - Transfer Learning with Convolutional Networks for Atmospheric Parameter
Retrieval [14.131127382785973]
MetOp衛星シリーズに搭載された赤外線音波干渉計(IASI)は、数値気象予測(NWP)に重要な測定値を提供する
IASIが提供する生データから正確な大気パラメータを取得することは大きな課題であるが、NWPモデルでデータを使用するには必要である。
本研究では,iasiデータから抽出した特徴を,低い高度で異なる物理変数を予測するように設計された別の統計手法への入力として使用できることを示す。
論文 参考訳(メタデータ) (2020-12-09T09:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。