論文の概要: Closer to Language than Steam: AI as the Cognitive Engine of a New Productivity Revolution
- arxiv url: http://arxiv.org/abs/2506.10281v1
- Date: Thu, 12 Jun 2025 01:43:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.520955
- Title: Closer to Language than Steam: AI as the Cognitive Engine of a New Productivity Revolution
- Title(参考訳): Steamよりも言語に近い - 新しい生産性革命の認知エンジンとしてのAI
- Authors: Xinmin Fang, Lingfeng Tao, Zhengxiong Li,
- Abstract要約: 本稿では,文章言語に類似した認知革命としてのAIの理論的フレーミングを開発する。
AIの出現と情報技術の歴史的飛躍を比較して、それが知識労働をいかに増幅するかを示す。
私たちの中心的な議論は、AIが認知のエンジンとして機能する、ということです。
- 参考スコア(独自算出の注目度): 2.1142253753427402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) is reframed as a cognitive engine driving a novel productivity revolution distinct from the Industrial Revolution's physical thrust. This paper develops a theoretical framing of AI as a cognitive revolution akin to written language - a transformative augmentation of human intellect rather than another mechanized tool. We compare AI's emergence to historical leaps in information technology to show how it amplifies knowledge work. Examples from various domains demonstrate AI's impact as a driver of productivity in cognitive tasks. We adopt a multidisciplinary perspective combining computer science advances with economic insights and sociological perspectives on how AI reshapes work and society. Through conceptual frameworks, we visualize the shift from manual to cognitive productivity. Our central argument is that AI functions as an engine of cognition - comparable to how human language revolutionized knowledge - heralding a new productivity paradigm. We discuss how this revolution demands rethinking of skills, organizations, and policies. This paper, balancing academic rigor with clarity, concludes that AI's promise lies in complementing human cognitive abilities, marking a new chapter in productivity evolution.
- Abstract(参考訳): 人工知能(AI)は、産業革命の物理的推力とは異なる新しい生産性革命を駆動する認知エンジンとして再編成される。
本稿では、機械化ツールではなく、人間の知能の変容である書記言語に類似した認知革命としてのAIの理論的フレーミングを開発する。
AIの出現と情報技術の歴史的飛躍を比較して、それが知識労働をいかに増幅するかを示す。
さまざまなドメインの例は、認知タスクにおける生産性のドライバとしてのAIの影響を示しています。
我々は、コンピュータサイエンスの進歩と経済的な洞察と社会学的視点を組み合わせた多分野的な視点を採用する。
概念的なフレームワークを通じて、手作業から認知的生産性への移行を可視化する。
我々の中心的な議論は、AIが認知のエンジンとして機能し、人間の言語が知識をどう革命させたかに匹敵する。
我々は、この革命がいかにスキル、組織、政策の再考を要求するかについて議論する。
学術的な厳密さと明快さのバランスをとるこの論文は、AIの約束は人間の認知能力の補完であり、生産性の進化の新しい章である、と結論付けている。
関連論文リスト
- Augmenting Minds or Automating Skills: The Differential Role of Human Capital in Generative AI's Impact on Creative Tasks [4.39919134458872]
ジェネレーティブAIは、創造的な仕事を急速に作り直し、その受益者や社会的意味について批判的な疑問を提起している。
この研究は、創造的タスクにおいて、生成的AIが様々な形態の人的資本とどのように相互作用するかを探求することによって、一般的な仮定に挑戦する。
AIはクリエイティブツールへのアクセスを民主化するが、同時に認知的不平等を増幅する。
論文 参考訳(メタデータ) (2024-12-05T08:27:14Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
AI技術は、科学的発見と意思決定において人間を支援することができるが、民主主義と個人を妨害することもある。
AIの責任ある使用と人間-AIチームへの参加は、AIアライメントの必要性をますます示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - AI and Social Theory [0.0]
我々は、人工知能(AI)が意味するものを定義することから始まる、AI駆動型社会理論のプログラムをスケッチする。
そして、AIベースのモデルがデジタルデータの可用性を増大させ、予測力に基づいて異なる社会的理論の有効性をテストするためのモデルを構築します。
論文 参考訳(メタデータ) (2024-07-07T12:26:16Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
我々は、周囲の信号を入力として取り、それを処理して環境を理解する、知覚の認知機能に焦点を当てる。
我々は、認知科学にインスパイアされたAIシステムを構築するために、AIに一連の方法を提案する。
論文 参考訳(メタデータ) (2023-10-13T01:21:55Z) - A Review on Objective-Driven Artificial Intelligence [0.0]
人間は、コミュニケーションにおける文脈、ニュアンス、微妙な手がかりを理解する能力を持っている。
人間は、世界に関する論理的推論と予測を行うのに役立つ、常識的な知識の広大なリポジトリを持っています。
機械はこの本質的な理解に欠けており、人間が自明に感じる状況を理解するのに苦労することが多い。
論文 参考訳(メタデータ) (2023-08-20T02:07:42Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Building Human-like Communicative Intelligence: A Grounded Perspective [1.0152838128195465]
言語学習における驚くべき進歩の後、AIシステムは人間のコミュニケーション能力の重要な側面を反映しない天井に近づいたようだ。
本稿は、ナチビストと象徴的パラダイムに基づく認知にインスパイアされたAIの方向性には、現代AIの進歩を導くために必要なサブストラテジと具体性がないことを示唆する。
本稿では,「地下」言語知能構築のための具体的かつ実装可能なコンポーネントのリストを提案する。
論文 参考訳(メタデータ) (2022-01-02T01:43:24Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。