GraphRAG-Causal: A novel graph-augmented framework for causal reasoning and annotation in news
- URL: http://arxiv.org/abs/2506.11600v1
- Date: Fri, 13 Jun 2025 09:09:08 GMT
- Title: GraphRAG-Causal: A novel graph-augmented framework for causal reasoning and annotation in news
- Authors: Abdul Haque, Umm e Hani, Ahmad Din, Muhammad Babar, Ali Abbas, Insaf Ullah,
- Abstract summary: GraphRAG-Causal combines graph-based retrieval with large language models to enhance causal reasoning in news analysis.<n>It achieves an impressive F1-score of 82.1% on causal classification using just 20 few-shot examples.<n>This approach significantly boosts accuracy and consistency, making it highly suitable for real-time applications in news reliability assessment, misinformation detection, and policy analysis.
- Score: 0.48379436447082086
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: GraphRAG-Causal introduces an innovative framework that combines graph-based retrieval with large language models to enhance causal reasoning in news analysis. Traditional NLP approaches often struggle with identifying complex, implicit causal links, especially in low-data scenarios. Our approach addresses these challenges by transforming annotated news headlines into structured causal knowledge graphs. It then employs a hybrid retrieval system that merges semantic embeddings with graph-based structural cues leveraging Neo4j to accurately match and retrieve relevant events. The framework is built on a three-stage pipeline: First, during Data Preparation, news sentences are meticulously annotated and converted into causal graphs capturing cause, effect, and trigger relationships. Next, the Graph Retrieval stage stores these graphs along with their embeddings in a Neo4j database and utilizes hybrid Cypher queries to efficiently identify events that share both semantic and structural similarities with a given query. Finally, the LLM Inference stage utilizes these retrieved causal graphs in a few-shot learning setup with XML-based prompting, enabling robust classification and tagging of causal relationships. Experimental evaluations demonstrate that GraphRAG-Causal achieves an impressive F1-score of 82.1% on causal classification using just 20 few-shot examples. This approach significantly boosts accuracy and consistency, making it highly suitable for real-time applications in news reliability assessment, misinformation detection, and policy analysis.
Related papers
- GLANCE: Graph Logic Attention Network with Cluster Enhancement for Heterophilous Graph Representation Learning [54.60090631330295]
Graph Neural Networks (GNNs) have demonstrated significant success in learning from graph-structured data but often struggle on heterophilous graphs.<n>We propose GLANCE, a novel framework that integrates logic-guided reasoning, dynamic graph refinement, and adaptive clustering to enhance graph representation learning.
arXiv Detail & Related papers (2025-07-24T15:45:26Z) - GraphRunner: A Multi-Stage Framework for Efficient and Accurate Graph-Based Retrieval [3.792463570467098]
GraphRunner is a novel graph-based retrieval framework that operates in three distinct stages: planning, verification, and execution.<n>It significantly reduces reasoning errors and detects hallucinations before execution.<n>Our evaluation using the GRBench dataset shows that GraphRunner consistently outperforms existing approaches.
arXiv Detail & Related papers (2025-07-11T18:10:01Z) - Context Pooling: Query-specific Graph Pooling for Generic Inductive Link Prediction in Knowledge Graphs [55.918039693545616]
We introduce a novel method, named Context Pooling, to enhance GNN-based models' efficacy for link predictions in Knowledge Graphs.<n>Our method is generic and assessed by being applied to two state-of-the-art (SOTA) models on three public transductive and inductive datasets.
arXiv Detail & Related papers (2025-07-10T09:54:37Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
arXiv Detail & Related papers (2025-05-22T05:15:27Z) - RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
We introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph)<n>RAGraph brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios.<n>During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks.
arXiv Detail & Related papers (2024-10-31T12:05:21Z) - CEGRL-TKGR: A Causal Enhanced Graph Representation Learning Framework for Temporal Knowledge Graph Reasoning [7.738230390425271]
We propose an innovative Causal Enhanced Graph Representation Learning framework for TKGR (named CEGRL-TKGR)<n>This framework introduces causal structures in graph-based representation learning to unveil the essential causal relationships between events.<n>We also advocate the utilization of causal representations for predictions, aiming to mitigate the effects of erroneous correlations caused by confounding features.
arXiv Detail & Related papers (2024-08-15T03:34:53Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Constructing and Interpreting Causal Knowledge Graphs from News [3.3071569417370745]
Many financial jobs rely on news to learn about causal events in the past and present, to make informed decisions and predictions about the future.
We propose a methodology to construct causal knowledge graphs (KGs) from news using two steps: (1) Extraction of Causal Relations, and (2) Argument Clustering and Representation into KG.
arXiv Detail & Related papers (2023-05-16T11:33:32Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.