BreastDCEDL: A Comprehensive Breast Cancer DCE-MRI Dataset and Transformer Implementation for Treatment Response Prediction
- URL: http://arxiv.org/abs/2506.12190v3
- Date: Sun, 13 Jul 2025 14:35:18 GMT
- Title: BreastDCEDL: A Comprehensive Breast Cancer DCE-MRI Dataset and Transformer Implementation for Treatment Response Prediction
- Authors: Naomi Fridman, Bubby Solway, Tomer Fridman, Itamar Barnea, Anat Goldstein,
- Abstract summary: We present BreastDCEDL, a curated, deep learning-ready dataset comprising pre-treatment 3D Dynamic Contrast-Enhanced MRI (DCE-MRI) scans from 2,070 breast cancer patients.<n>The raw DICOM imaging data were rigorously converted into standardized 3D NIfTI volumes with preserved signal integrity.<n>BreastDCEDL includes predefined benchmark splits, offering a framework for reproducible research and enabling clinically meaningful modeling in breast cancer imaging.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer remains a leading cause of cancer-related mortality worldwide, making early detection and accurate treatment response monitoring critical priorities. We present BreastDCEDL, a curated, deep learning-ready dataset comprising pre-treatment 3D Dynamic Contrast-Enhanced MRI (DCE-MRI) scans from 2,070 breast cancer patients drawn from the I-SPY1, I-SPY2, and Duke cohorts, all sourced from The Cancer Imaging Archive. The raw DICOM imaging data were rigorously converted into standardized 3D NIfTI volumes with preserved signal integrity, accompanied by unified tumor annotations and harmonized clinical metadata including pathologic complete response (pCR), hormone receptor (HR), and HER2 status. Although DCE-MRI provides essential diagnostic information and deep learning offers tremendous potential for analyzing such complex data, progress has been limited by lack of accessible, public, multicenter datasets. BreastDCEDL addresses this gap by enabling development of advanced models, including state-of-the-art transformer architectures that require substantial training data. To demonstrate its capacity for robust modeling, we developed the first transformer-based model for breast DCE-MRI, leveraging Vision Transformer (ViT) architecture trained on RGB-fused images from three contrast phases (pre-contrast, early post-contrast, and late post-contrast). Our ViT model achieved state-of-the-art pCR prediction performance in HR+/HER2- patients (AUC 0.94, accuracy 0.93). BreastDCEDL includes predefined benchmark splits, offering a framework for reproducible research and enabling clinically meaningful modeling in breast cancer imaging.
Related papers
- 4D VQ-GAN: Synthesising Medical Scans at Any Time Point for Personalised Disease Progression Modelling of Idiopathic Pulmonary Fibrosis [5.926086195644801]
We propose 4D Vector Quantised Generative Adversarial Networks (4D-VQ-GAN), a model capable of generating realistic CT volumes of IPF patients.<n>We evaluate different configurations of our model for generating longitudinal CT scans and compare the results against ground truth data.
arXiv Detail & Related papers (2025-02-08T22:25:53Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Deep Learning-Based Noninvasive Screening of Type 2 Diabetes with Chest X-ray Images and Electronic Health Records [2.2940141855172036]
This study evaluates the integration of chest X-ray (CXR) images with other noninvasive data sources, including electronic health records (EHRs) and electrocardiography signals, for T2DM detection.<n>The end-to-end trained ResNet-LSTM model achieved an AUROC of 0.86, surpassing the CXR-only baseline by 2.3% with just 9863 training samples.
arXiv Detail & Related papers (2024-12-14T20:18:16Z) - MPBD-LSTM: A Predictive Model for Colorectal Liver Metastases Using Time Series Multi-phase Contrast-Enhanced CT Scans [8.437136847051546]
We build upon state-of-the-art deep learning techniques to evaluate how to best predict colorectal cancer liver metastasis.<n>Our experimental results show that a multi-plane architecture based on 3D bi-directional LSTM, which we call MPBD-LSTM, works best.
arXiv Detail & Related papers (2024-12-02T21:02:11Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CT is a large-scale, region-guided 3D chest CT interpretation dataset based on CT-RATE.
We leverage the latest powerful universal segmentation and large language models to extend the original datasets.
arXiv Detail & Related papers (2024-04-25T17:11:37Z) - Pre- to Post-Contrast Breast MRI Synthesis for Enhanced Tumour Segmentation [0.9722528000969453]
This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence using a generative adversarial network (GAN)
We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation.
Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation.
arXiv Detail & Related papers (2023-11-17T21:48:41Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
preoperative discrimination between T2 and T3 stages is arguably both the most challenging and clinically significant task for rectal cancer treatment.
We present a volumetric convolutional neural network to accurately discriminate T2 from T3 stage rectal cancer with rectal MR volumes.
arXiv Detail & Related papers (2022-09-13T07:10:14Z) - PD-DWI: Predicting response to neoadjuvant chemotherapy in invasive
breast cancer with Physiologically-Decomposed Diffusion-Weighted MRI
machine-learning model [0.0]
We introduce PD-DWI, a physiologically decomposed DWI machine-learning model to predict pCR from DWI and clinical data.
Our model substantially improves the area under the curve (AUC), compared to the current best result on the leaderboard.
arXiv Detail & Related papers (2022-06-12T08:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.