論文の概要: Metropolis-Hastings Sampling for 3D Gaussian Reconstruction
- arxiv url: http://arxiv.org/abs/2506.12945v2
- Date: Fri, 24 Oct 2025 17:23:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 09:00:15.044894
- Title: Metropolis-Hastings Sampling for 3D Gaussian Reconstruction
- Title(参考訳): 3次元ガウス復元のためのメトロポリス・ハスティング
- Authors: Hyunjin Kim, Haebeom Jung, Jaesik Park,
- Abstract要約: 3次元ガウス平滑化のための適応型サンプリングフレームワーク(3DGS)を提案する。
我々の枠組みは, 確率的サンプリングプロセスとして, デンシフィケーションとプルーニングを改質することで限界を克服する。
提案手法は,最先端モデルのビュー合成品質を適度に上回りながら,より高速な収束を実現する。
- 参考スコア(独自算出の注目度): 31.840492077537018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an adaptive sampling framework for 3D Gaussian Splatting (3DGS) that leverages comprehensive multi-view photometric error signals within a unified Metropolis-Hastings approach. Vanilla 3DGS heavily relies on heuristic-based density-control mechanisms (e.g., cloning, splitting, and pruning), which can lead to redundant computations or premature removal of beneficial Gaussians. Our framework overcomes these limitations by reformulating densification and pruning as a probabilistic sampling process, dynamically inserting and relocating Gaussians based on aggregated multi-view errors and opacity scores. Guided by Bayesian acceptance tests derived from these error-based importance scores, our method substantially reduces reliance on heuristics, offers greater flexibility, and adaptively infers Gaussian distributions without requiring predefined scene complexity. Experiments on benchmark datasets, including Mip-NeRF360, Tanks and Temples and Deep Blending, show that our approach reduces the number of Gaussians needed, achieving faster convergence while matching or modestly surpassing the view-synthesis quality of state-of-the-art models.
- Abstract(参考訳): 本稿では,メトロポリス・ハスティングス・アプローチの総合的な多視点光度誤差信号を利用する3次元ガウス散乱(3DGS)の適応サンプリングフレームワークを提案する。
バニラ3DGSはヒューリスティックに基づく密度制御機構(例えば、クローニング、分割、プルーニング)に大きく依存しており、冗長な計算や有益なガウスの早期除去につながる可能性がある。
本フレームワークは,多視点誤差と不透明度スコアに基づいて,確率的サンプリングプロセスとして密度化とプルーニングを改良し,ガウス人を動的に挿入・移動させることにより,これらの制限を克服する。
これらの誤差に基づく重要度スコアから導かれるベイズ受理試験によって導かれた本手法は,ヒューリスティックスへの依存を著しく低減し,柔軟性を向上し,事前定義されたシーンの複雑さを必要とせずにガウス分布を適応的に推定する。
Mip-NeRF360, Tanks and Temples, Deep Blendingなどのベンチマークデータセットを用いた実験により、我々のアプローチはガウスの必要な数を減らすことを示し、最先端モデルのビュー合成品質を適度に上回りながら、より高速な収束を実現している。
関連論文リスト
- UGOD: Uncertainty-Guided Differentiable Opacity and Soft Dropout for Enhanced Sparse-View 3DGS [8.78995910690481]
3D Gaussian Splatting (3DGS) は新規ビュー合成(NVS)の競争的アプローチとなっている
本稿では,ガウスの適応重み付けがレンダリング品質に与える影響について検討する。
提案手法は,MipNeRF 360データセットにおいて3.27%のPSNR改善を実現する。
論文 参考訳(メタデータ) (2025-08-07T01:42:22Z) - Shortening the Trajectories: Identity-Aware Gaussian Approximation for Efficient 3D Molecular Generation [2.631060597686179]
確率的生成モデル(GPGM)は、ガウス雑音でサンプルを破損させる過程を逆転することでデータを生成する。
これらのモデルは様々な領域にまたがって最先端のパフォーマンスを達成しているが、その実際の展開は高い計算コストに制約されている。
我々は,学習の粒度や推論の忠実さを犠牲にすることなく,生成効率を向上させる理論的基礎と実証的検証フレームワークを導入する。
論文 参考訳(メタデータ) (2025-07-11T21:39:32Z) - Steepest Descent Density Control for Compact 3D Gaussian Splatting [72.54055499344052]
3D Gaussian Splatting (3DGS)は、強力なリアルタイム高解像度ノベルビューとして登場した。
本稿では,3DGSの密度制御をデミストし,改良する理論的枠組みを提案する。
我々はSteepGSを導入し、コンパクトな点雲を維持しながら損失を最小限に抑える原則的戦略である、最も急な密度制御を取り入れた。
論文 参考訳(メタデータ) (2025-05-08T18:41:38Z) - Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting [0.3749861135832072]
この研究は、高画質勾配の領域を動的に洗練する適応的な密度化戦略を実装している。
その結果、レンダリング効率を犠牲にすることなく、より密度が高くより詳細なガウス的な手段が必要とされる。
論文 参考訳(メタデータ) (2025-04-08T07:15:58Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) は、新しいビュー合成において大きな進歩を遂げてきたが、ガウスプリミティブのかなりの数によって制限されている。
近年の手法では、密度の高いガウスの記憶容量を圧縮することでこの問題に対処しているが、レンダリングの品質と効率の維持には失敗している。
本稿では,ガウスの原始体を表現するためにガウスのプロトタイプを学習するProtoGSを提案し,視覚的品質を犠牲にすることなくガウスの総量を大幅に削減する。
論文 参考訳(メタデータ) (2025-03-21T18:55:14Z) - GP-GS: Gaussian Processes for Enhanced Gaussian Splatting [15.263608848427136]
本稿では,新しい3次元再構成フレームワークであるGaussian Processes enhanced Gaussian Splatting (GP-GS)を提案する。
GP-GSはスパース構造-運動点雲の適応的および不確実性誘導密度化を可能にする。
合成および実世界のデータセットで行った実験は、提案フレームワークの有効性と実用性を検証する。
論文 参考訳(メタデータ) (2025-02-04T12:50:16Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - PixelGaussian: Generalizable 3D Gaussian Reconstruction from Arbitrary Views [116.10577967146762]
PixelGaussianは、任意の視点から一般化可能な3Dガウス再構成を学習するための効率的なフレームワークである。
提案手法は,様々な視点によく一般化した最先端性能を実現する。
論文 参考訳(メタデータ) (2024-10-24T17:59:58Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをよりコンパクトなフォーマットに変換する方法である。
ネットワーク・プルーニングにインスパイアされたLightGaussianは、ガウシアンをシーン再構築において最小限のグローバルな重要性で特定した。
LightGaussian は 3D-GS フレームワークで FPS を 144 から 237 に上げながら,平均 15 倍の圧縮率を達成する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。