NeuralPDR: Neural Differential Equations as surrogate models for Photodissociation Regions
- URL: http://arxiv.org/abs/2506.14270v1
- Date: Tue, 17 Jun 2025 07:35:02 GMT
- Title: NeuralPDR: Neural Differential Equations as surrogate models for Photodissociation Regions
- Authors: Gijs Vermariƫn, Thomas G. Bisbas, Serena Viti, Yue Zhao, Xuefei Tang, Rahul Ravichandran,
- Abstract summary: We present surrogate models that can replace the original chemical code.<n>We show that these surrogate models can provide speedup and reproduce the original observable column density maps of the dataset.
- Score: 3.030422700459718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational astrochemical models are essential for helping us interpret and understand the observations of different astrophysical environments. In the age of high-resolution telescopes such as JWST and ALMA, the substructure of many objects can be resolved, raising the need for astrochemical modeling at these smaller scales, meaning that the simulations of these objects need to include both the physics and chemistry to accurately model the observations. The computational cost of the simulations coupling both the three-dimensional hydrodynamics and chemistry is enormous, creating an opportunity for surrogate models that can effectively substitute the chemical solver. In this work we present surrogate models that can replace the original chemical code, namely Latent Augmented Neural Ordinary Differential Equations. We train these surrogate architectures on three datasets of increasing physical complexity, with the last dataset derived directly from a three-dimensional simulation of a molecular cloud using a Photodissociation Region (PDR) code, 3D-PDR. We show that these surrogate models can provide speedup and reproduce the original observable column density maps of the dataset. This enables the rapid inference of the chemistry (on the GPU), allowing for the faster statistical inference of observations or increasing the resolution in hydrodynamical simulations of astrophysical environments.
Related papers
- A survey of probabilistic generative frameworks for molecular simulations [0.0]
Generative artificial intelligence is now a widely used tool in molecular science.
We introduce and explain several classes of generative models, broadly sorted into two categories: flow-based models and diffusion models.
We examine their accuracy, computational cost, and generation speed across datasets with tunable dimensionality, complexity, and modal asymmetry.
arXiv Detail & Related papers (2024-11-14T12:05:08Z) - Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics [38.53044197103943]
GF-NODE integrates a graph Fourier transform for spatial frequency decomposition with a Neural ODE framework for continuous-time evolution.<n>We show that GF-NODE achieves state-of-the-art accuracy while preserving essential geometrical features over extended simulations.<n>These findings highlight the promise of bridging spectral decomposition with continuous-time modeling to improve the robustness and predictive power of MD simulations.
arXiv Detail & Related papers (2024-11-03T15:10:48Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
We introduce PHYRECON, the first approach to leverage both differentiable rendering and differentiable physics simulation to learn implicit surface representations.
Central to this design is an efficient transformation between SDF-based implicit representations and explicit surface points.
Our results also exhibit superior physical stability in physical simulators, with at least a 40% improvement across all datasets.
arXiv Detail & Related papers (2024-04-25T15:06:58Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Invertible Coarse Graining with Physics-Informed Generative Artificial Intelligence [9.343446996260328]
Two challenges are commonly present in multiscale molecular modeling.
One is to construct coarse grained models by passing information from the fine to coarse levels; the other is to restore finer molecular details given coarse grained configurations.
We present a theory connecting them, and develop a methodology called Cycle Coarse Graining (CCG) to solve both problems in a unified manner.
arXiv Detail & Related papers (2023-05-02T08:05:42Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Deep learning-based surrogate model for 3-D patient-specific
computational fluid dynamics [6.905238157628892]
It is notoriously challenging to parameterize the input space of arbitrarily complex 3-D geometries.
We propose a novel deep learning surrogate modeling solution to address these challenges and enable rapid hemodynamic predictions.
arXiv Detail & Related papers (2022-04-11T17:34:51Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
We are replacing the numerical code by a computationally cheaper projection based surrogate model.
The model is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods.
This model has shown a good quality reconstruction in a problem of perturbation of data within a narrow range of simulation parameters and can be used for input data of large size.
arXiv Detail & Related papers (2021-06-01T08:46:04Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Learning effective physical laws for generating cosmological
hydrodynamics with Lagrangian Deep Learning [7.6146285961466]
We propose Lagrangian Deep Learning to learn outputs of cosmological hydrodynamical simulations.
The model uses layers of Lagrangian displacements of particles describing the observables to learn the effective physical laws.
The total number of learned parameters is only of order 10, and they can be viewed as effective theory parameters.
arXiv Detail & Related papers (2020-10-06T18:00:00Z) - Bayesian Force Fields from Active Learning for Simulation of
Inter-Dimensional Transformation of Stanene [3.708456605408296]
We present a way to dramatically accelerate Gaussian process models for interatomic force fields based on many-body kernels.
This allows for automated active learning of models combining near-quantum accuracy, built-in uncertainty, and constant cost of evaluation.
arXiv Detail & Related papers (2020-08-26T20:27:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.