Predicting Onflow Parameters Using Transfer Learning for Domain and Task Adaptation
- URL: http://arxiv.org/abs/2506.14784v1
- Date: Mon, 26 May 2025 13:39:42 GMT
- Title: Predicting Onflow Parameters Using Transfer Learning for Domain and Task Adaptation
- Authors: Emre Yilmaz, Philipp Bekemeyer,
- Abstract summary: We propose a transfer learning methodology to predict the onflow parameters, specifically angle of attack and onflow speed.<n>Results successfully demonstrate the potential of the approach for adaptation to changing data distribution, domain extension, and task update.
- Score: 4.267911393791743
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Determining onflow parameters is crucial from the perspectives of wind tunnel testing and regular flight and wind turbine operations. These parameters have traditionally been predicted via direct measurements which might lead to challenges in case of sensor faults. Alternatively, a data-driven prediction model based on surface pressure data can be used to determine these parameters. It is essential that such predictors achieve close to real-time learning as dictated by practical applications such as monitoring wind tunnel operations or learning the variations in aerodynamic performance of aerospace and wind energy systems. To overcome the challenges caused by changes in the data distribution as well as in adapting to a new prediction task, we propose a transfer learning methodology to predict the onflow parameters, specifically angle of attack and onflow speed. It requires first training a convolutional neural network (ConvNet) model offline for the core prediction task, then freezing the weights of this model except the selected layers preceding the output node, and finally executing transfer learning by retraining these layers. A demonstration of this approach is provided using steady CFD analysis data for an airfoil for i) domain adaptation where transfer learning is performed with data from a target domain having different data distribution than the source domain and ii) task adaptation where the prediction task is changed. Further exploration on the influence of noisy data, performance on an extended domain, and trade studies varying sampling sizes and architectures are provided. Results successfully demonstrate the potential of the approach for adaptation to changing data distribution, domain extension, and task update while the application for noisy data is concluded to be not as effective.
Related papers
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.<n>We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.<n>As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - A Causally Informed Pretraining Approach for Multimodal Foundation Models: Applications in Remote Sensing [16.824262496666893]
Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data.<n>We propose Causally Informed Variable-Step Forecasting (CI-VSF), a novel pretraining task that models forecasting as a conditional generation task.<n>We demonstrate that pretraining in such a fashion leads to enhanced performance when finetuned on both prediction and forecasting.
arXiv Detail & Related papers (2024-07-29T02:49:55Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts [6.80671668491958]
Test-time adaptation (TTA) allows direct adaptation of a pre-trained model to unlabeled data during inference stage without access to source data or additional training.
We propose three domain shift paradigms: photogrammetric to airborne LiDAR, airborne to mobile LiDAR, and synthetic to mobile laser scanning.
Experimental results show our method improves classification accuracy by up to 20% mIoU, outperforming other methods.
arXiv Detail & Related papers (2024-07-08T15:40:28Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
This paper conducts the first study of the online test-time adaptation techniques for spatial-temporal traffic flow forecasting problems.
We propose an Adaptive Double Correction by Series Decomposition (ADCSD) method, which first decomposes the output of the trained model into seasonal and trend-cyclical parts.
In the proposed ADCSD method, instead of fine-tuning the whole trained model during the testing phase, a lite network is attached after the trained model, and only the lite network is fine-tuned in the testing process each time a data entry is observed.
arXiv Detail & Related papers (2024-01-08T12:04:39Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
We propose a traffic flow physics-based transformation feature for Deep learning (DL) models for traffic flow forecasting.
This transformation incorporates Newell's uncongested and congested filters of traffic flows at the target locations, enabling the models to learn broader dynamics of the system.
An important advantage of our framework is its ability to be transferred to new locations where data is unavailable.
arXiv Detail & Related papers (2023-07-12T06:31:43Z) - Improving the Transferability of Time Series Forecasting with
Decomposition Adaptation [14.09967794482993]
In time series forecasting, it is difficult to obtain enough data, which limits the performance of neural forecasting models.
To alleviate the data scarcity limitation, we design Sequence Decomposition Adaptation Network (SeDAN)
SeDAN is a novel transfer architecture to improve forecasting performance on the target domain by aligning transferable knowledge from cross-domain datasets.
arXiv Detail & Related papers (2023-06-30T18:12:22Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.