CACTUS as a Reliable Tool for Early Classification of Age-related Macular Degeneration
- URL: http://arxiv.org/abs/2506.14843v1
- Date: Mon, 16 Jun 2025 12:41:13 GMT
- Title: CACTUS as a Reliable Tool for Early Classification of Age-related Macular Degeneration
- Authors: Luca Gherardini, Imre Lengyel, Tunde Peto, Caroline C. W. Klaverd, Magda A. Meester-Smoord, Johanna Maria Colijnd, EYE-RISK Consortium, E3 Consortium, Jose Sousa,
- Abstract summary: CACTUS offers explainability and flexibility, outperforming standard ML models.<n>By eliminating less relevant or biased data, we created a clinical scenario for clinicians to offer feedback and address biases.
- Score: 0.5224038339798622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) is used to tackle various tasks, such as disease classification and prediction. The effectiveness of ML models relies heavily on having large amounts of complete data. However, healthcare data is often limited or incomplete, which can hinder model performance. Additionally, issues like the trustworthiness of solutions vary with the datasets used. The lack of transparency in some ML models further complicates their understanding and use. In healthcare, particularly in the case of Age-related Macular Degeneration (AMD), which affects millions of older adults, early diagnosis is crucial due to the absence of effective treatments for reversing progression. Diagnosing AMD involves assessing retinal images along with patients' symptom reports. There is a need for classification approaches that consider genetic, dietary, clinical, and demographic factors. Recently, we introduced the -Comprehensive Abstraction and Classification Tool for Uncovering Structures-(CACTUS), aimed at improving AMD stage classification. CACTUS offers explainability and flexibility, outperforming standard ML models. It enhances decision-making by identifying key factors and providing confidence in its results. The important features identified by CACTUS allow us to compare with existing medical knowledge. By eliminating less relevant or biased data, we created a clinical scenario for clinicians to offer feedback and address biases.
Related papers
- PRETI: Patient-Aware Retinal Foundation Model via Metadata-Guided Representation Learning [3.771396977579353]
PRETI is a retinal foundation model that integrates metadata-aware learning with robust self-supervised representation learning.<n>We construct patient-level data pairs, associating images from the same individual to improve robustness against non-clinical variations.<n>Experiments demonstrate PRETI achieves state-of-the-art results across diverse diseases and biomarker predictions.
arXiv Detail & Related papers (2025-05-18T04:59:03Z) - An analysis of data variation and bias in image-based dermatological datasets for machine learning classification [2.039829968340841]
In clinical dermatology, classification models can detect malignant lesions on patients' skin using only RGB images as input.<n>Most learning-based methods employ data acquired from dermoscopic datasets on training, which are large and validated by a gold standard.<n>This work aims to evaluate the gap between dermoscopic and clinical samples and understand how the dataset variations impact training.
arXiv Detail & Related papers (2025-01-15T17:18:46Z) - Enhancing Osteoporosis Detection: An Explainable Multi-Modal Learning Framework with Feature Fusion and Variable Clustering [6.196283036344105]
Osteoporosis is a common condition that increases fracture risk, especially in older adults.
This study presents a novel multi-modal learning framework that integrates clinical and imaging data to improve diagnostic accuracy and model interpretability.
arXiv Detail & Related papers (2024-11-01T13:58:15Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
We study the behavior of Continual Learning (CL) strategies in medical imaging regarding classification performance.
We evaluate the Replay, Learning without Forgetting (LwF), LwF, and Pseudo-Label strategies.
LwF and Pseudo-Label exhibit optimal classification performance, but when including fairness metrics in the evaluation, it is clear that Pseudo-Label is less biased.
arXiv Detail & Related papers (2024-04-10T09:48:52Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Machine Learning Workflow to Explain Black-box Models for Early
Alzheimer's Disease Classification Evaluated for Multiple Datasets [1.725982481793229]
Hard-to-interpret Black-box Machine Learning (ML) were often used for early Alzheimer's Disease (AD) detection.
This study developed a workflow based on Shapley values.
Models trained using cognitive test scores significantly outperformed brain models.
arXiv Detail & Related papers (2022-05-12T06:58:11Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.