論文の概要: Data analysis using discrete cubical homology
- arxiv url: http://arxiv.org/abs/2506.15020v1
- Date: Tue, 17 Jun 2025 23:12:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.505648
- Title: Data analysis using discrete cubical homology
- Title(参考訳): 離散3次ホモロジーを用いたデータ解析
- Authors: Chris Kapulkin, Nathan Kershaw,
- Abstract要約: データ解析のための新しいツールとして,永続的離散ホモロジーを提案する。
グラフのフィルタとして高次元データをペア相関を用いて表現する方法を提案する。
気象データや財務データなど、これらのツールのいくつかの応用について論じ、各分野の標準手法と比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new tool for data analysis: persistence discrete homology, which is well-suited to analyze filtrations of graphs. In particular, we provide a novel way of representing high-dimensional data as a filtration of graphs using pairwise correlations. We discuss several applications of these tools, e.g., in weather and financial data, comparing them to the standard methods used in the respective fields.
- Abstract(参考訳): データ解析のための新しいツールとして,グラフのフィルタリング解析に適した永続離散ホモロジーを提案する。
特に,グラフのフィルタとして高次元データをペア相関を用いて表現する方法を提案する。
気象データや財務データなど、これらのツールのいくつかの応用について検討し、各分野の標準手法と比較する。
関連論文リスト
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
ホモフィリ原理では、同じラベルや類似属性を持つieノードが接続される可能性が高い。
最近の研究で、GNNのパフォーマンスとNNのパフォーマンスが満足できない非自明なデータセットが特定されている。
論文 参考訳(メタデータ) (2024-07-12T18:04:32Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - On topological data analysis for structural dynamics: an introduction to
persistent homology [0.0]
トポロジカル・データ分析(トポロジカル・データ・アナリティクス)は、長さのスケールでデータの形状を定量化する手法である。
永続ホモロジー(Persistent homology)は、長さのスケールでデータの形状を定量化する手法である。
論文 参考訳(メタデータ) (2022-09-12T10:39:38Z) - Extending compositional data analysis from a graph signal processing
perspective [1.066048003460524]
本稿では,合成データ解析とグラフ信号処理を関連付ける。
これはアッチソン幾何学を、選択された対数比のみを考慮できる設定に拡張する。
論文 参考訳(メタデータ) (2022-01-25T20:14:08Z) - Adaptive Data Analysis with Correlated Observations [21.969356766737622]
いくつかのケースでは、サンプル内に依存関係がある場合でも、差分プライバシーが保証されることが示されています。
転写圧縮と適応データ解析の関連性は,非ID設定にまで拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-01-21T14:00:30Z) - A Novel Approach to Topological Graph Theory with R-K Diagrams and
Gravitational Wave Analysis [0.0]
本稿では,グラフとトポロジカルデータ分析のスムーズな遷移のために,データポイント間のベクトル化関連を符号化する新しい手法を提案する。
このようなベクトル化された関連を、位相空間内のミクロ状態を表す単純複体に変換する効果的な方法が決定的に明らかにされる。
本手法の有効性と効果は,LIGO Open Science Centreが発行したLIGOデータセットから得られた重力波データの高次元的生測および導出測度について実験的に検証した。
論文 参考訳(メタデータ) (2021-12-14T17:18:53Z) - DoGR: Disaggregated Gaussian Regression for Reproducible Analysis of
Heterogeneous Data [4.720638420461489]
データを重なり合うクラスタ(分散)に分割し,その内の動作をモデル化することで,潜在的共同設立者を検出するDoGRを導入する(回帰)。
実世界のデータに適用すると,本手法は有意義なクラスタとその特徴的行動を発見し,グループ差と関心の帰結に対する影響について考察する。
我々のフレームワークは、潜伏した共同創設者を考慮し、ノイズの多い異種データの探索分析を促進し、新しいデータにもっと一般化した予測モデルを学ぶのに利用できる。
論文 参考訳(メタデータ) (2021-08-31T01:58:23Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。