論文の概要: Linear-Time Primitives for Algorithm Development in Graphical Causal Inference
- arxiv url: http://arxiv.org/abs/2506.15758v1
- Date: Wed, 18 Jun 2025 12:52:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:04.770579
- Title: Linear-Time Primitives for Algorithm Development in Graphical Causal Inference
- Title(参考訳): グラフ因果推論におけるアルゴリズム開発のための線形時間プリミティブ
- Authors: Marcel Wienöbst, Sebastian Weichwald, Leonard Henckel,
- Abstract要約: CIflyは因果推論における効率的なアルゴリズムプリミティブのためのフレームワークである。
多くの因果推論タスクが到達可能性に還元されるという洞察に基づいて構築されている。
- 参考スコア(独自算出の注目度): 5.985049198013916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce CIfly, a framework for efficient algorithmic primitives in graphical causal inference that isolates reachability as a reusable core operation. It builds on the insight that many causal reasoning tasks can be reduced to reachability in purpose-built state-space graphs that can be constructed on the fly during traversal. We formalize a rule table schema for specifying such algorithms and prove they run in linear time. We establish CIfly as a more efficient alternative to the common primitives moralization and latent projection, which we show are computationally equivalent to Boolean matrix multiplication. Our open-source Rust implementation parses rule table text files and runs the specified CIfly algorithms providing high-performance execution accessible from Python and R. We demonstrate CIfly's utility by re-implementing a range of established causal inference tasks within the framework and by developing new algorithms for instrumental variables. These contributions position CIfly as a flexible and scalable backbone for graphical causal inference, guiding algorithm development and enabling easy and efficient deployment.
- Abstract(参考訳): グラフ因果推論における効率的なアルゴリズムプリミティブのためのフレームワークであるCIflyを導入し、再利用可能なコア操作としてリーチビリティを分離する。
これは、多くの因果推論タスクを目的に構築された状態空間グラフの到達可能性に還元できるという知見に基づいている。
このようなアルゴリズムを指定するためのルールテーブルスキーマを形式化し、線形時間で実行することを示す。
我々はCIflyを、一般的なプリミティブのモラル化と潜在射影のより効率的な代替品として確立し、ブール行列乗法と計算的に等価であることを示した。
当社のオープンソースのRust実装では,ルールテーブルのテキストファイルを解析し,PythonとRからアクセス可能なハイパフォーマンス実行を提供するCIflyアルゴリズムを実行しています。
これらのコントリビューションは、CIflyをグラフィカル因果推論のための柔軟でスケーラブルなバックボーンとして位置づけ、アルゴリズム開発を指導し、簡単かつ効率的なデプロイメントを可能にする。
関連論文リスト
- Scalability Matters: Overcoming Challenges in InstructGLM with Similarity-Degree-Based Sampling [1.2805157669888096]
提案するSDM-InstructGLMは,GNNに依存することなく,拡張性と効率を向上する命令調整グラフ言語モデル(InstructGLM)フレームワークである。
本手法では,ノード間類似度と次数集中度に基づいてグラフ情報を選択的にサンプリングし,符号化する,類似度に基づくバイアス付きランダムウォーク機構を提案する。
本結果は,LLMのみのグラフ処理の実現可能性を示し,命令ベースの微調整によって最適化されたスケーラブルかつ解釈可能なグラフ言語モデル(GLM)を実現する。
論文 参考訳(メタデータ) (2025-05-02T06:08:21Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
論文 参考訳(メタデータ) (2025-03-25T03:21:48Z) - LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
グラフ入力から結節隣接スペクトル埋め込み(ASE)を学習する。
LASEは解釈可能で、パラメータ効率が高く、未観測のエッジを持つ入力に対して堅牢である。
LASEレイヤは、Graph Convolutional Network (GCN)と完全に接続されたGraph Attention Network (GAT)モジュールを組み合わせる。
論文 参考訳(メタデータ) (2024-12-23T17:35:19Z) - Decomposable Transformer Point Processes [2.1756081703276]
本稿では,注目に基づくアーキテクチャの利点の維持と,薄型化アルゴリズムの限界を回避する枠組みを提案する。
提案手法は,その履歴が与えられたシーケンスの次の事象を予測する上で,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-09-26T13:22:58Z) - On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
テンポラルグラフ学習(TGL)は、様々な現実世界のアプリケーションにまたがる一般的なテクニックとなっている。
本稿では,異なるTGLアルゴリズムの一般化能力について検討する。
一般化誤差が小さく、全体的な性能が向上し、モデルの複雑さが低下する単純化されたTGLネットワークを提案する。
論文 参考訳(メタデータ) (2024-02-26T08:22:22Z) - SALSA-CLRS: A Sparse and Scalable Benchmark for Algorithmic Reasoning [20.706469085872516]
本稿では、CLRSアルゴリズム学習ベンチマークの拡張、スケーラビリティの優先順位付け、スパース表現の利用について紹介する。
我々のアプローチには、オリジナルのCLRSベンチマークからの適応アルゴリズムが含まれており、分散およびランダム化アルゴリズムの新たな問題が導入されている。
論文 参考訳(メタデータ) (2023-09-21T16:57:09Z) - Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement
Learning [2.365237699556817]
直接非巡回グラフ(DAG)タスクは現在、複雑なアプリケーションをモデル化するためにリアルタイムドメインで採用されている。
エッジを反復的に生成することでDAG幅を最小化する新しいDAGスケジューリングフレームワークを提案する。
我々は,提案アルゴリズムの有効性を,最先端DAGスケジューリングと最適混合整数線形プログラミングベースラインとの比較により評価した。
論文 参考訳(メタデータ) (2023-08-28T15:19:18Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - DAGs with No Curl: An Efficient DAG Structure Learning Approach [62.885572432958504]
近年のDAG構造学習は連続的な非巡回性制約を伴う制約付き連続最適化問題として定式化されている。
本稿では,DAG空間の重み付き隣接行列を直接モデル化し,学習するための新しい学習フレームワークを提案する。
本手法は, 線形および一般化された構造方程式モデルにおいて, ベースラインDAG構造学習法よりも精度が高いが, 効率がよいことを示す。
論文 参考訳(メタデータ) (2021-06-14T07:11:36Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z) - Can We Learn Heuristics For Graphical Model Inference Using
Reinforcement Learning? [114.24881214319048]
我々は、強化学習を用いて、高次条件ランダム場(CRF)における推論を解くためのプログラム、すなわち、ポリシーを学習できることを示します。
本手法は,ポテンシャルの形式に制約を加えることなく,推論タスクを効率的に解く。
論文 参考訳(メタデータ) (2020-04-27T19:24:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。