Collisional charging of a transmon quantum battery
- URL: http://arxiv.org/abs/2506.16177v1
- Date: Thu, 19 Jun 2025 09:50:49 GMT
- Title: Collisional charging of a transmon quantum battery
- Authors: N. Massa, F. Cavaliere, D. Ferraro,
- Abstract summary: We present the model of a quantum device for energy storage with anharmonic level spacing, based on a superconducting circuit in the transmon regime.<n>It is charged via the sequential interaction with a collection of identical and independent ancillary two-level systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by recent developments in the field of multilevel quantum batteries, we present the model of a quantum device for energy storage with anharmonic level spacing, based on a superconducting circuit in the transmon regime. It is charged via the sequential interaction with a collection of identical and independent ancillary two-level systems. By means of a numerical analysis we show that, in case these ancillas are coherent, this kind of quantum battery can achieve remarkable performances for what it concerns the control of the stored energy and its extraction in regimes of parameters within reach in nowadays quantum circuits.
Related papers
- Optimal absorption and emission of itinerant fields into a spin ensemble memory [39.74150797598488]
This work focuses on spin-based quantum memories, where itinerant electromagnetic fields are stored in large ensembles.<n>We develop a cascaded quantum model to describe both absorption and emission processes.<n> Numerical simulations are presented in the context of microwave-frequency quantum memories interfaced with superconducting quantum processors.
arXiv Detail & Related papers (2025-06-06T14:16:54Z) - Phase transitions, symmetries, and tunneling in Kerr parametric oscillators [37.69303106863453]
We study the onset of ground-state and excited-state quantum phase transitions in KPOs.<n>We identify the critical points associated with quantum phase transitions and analyze their influence on the energy spectrum and tunneling dynamics.<n>Our findings provide insights into the engineering of robust quantum states, quantum dynamics control, and onset of quantum phase transitions with implications for critical quantum sensing.
arXiv Detail & Related papers (2025-04-21T18:00:19Z) - Quantum computation over the vibrational modes of a single trapped ion [37.69303106863453]
Trapped-ion systems provide a robust platform with long coherence times and precise qubit control.<n>Quantum operations that can be generated in trapped-ion systems are employed to investigate applications aimed at state preparation in continuous-variable quantum systems.
arXiv Detail & Related papers (2024-12-19T16:38:24Z) - Macroscopic quantum superpositions in superconducting circuits [0.0]
A test current pulse of fixed energy and adjustable length acquires quantum features after interacting with the quantum vacuum of the photon field.
As the length of the pulse grows with respect to the characteristic size of the quantum system, the test pulse undergoes quantum-to-classical transition.
This model differs from previous ones for its simplicity and points towards a new way of creating correlated systems suitable for quantum-based technology.
arXiv Detail & Related papers (2024-06-10T17:29:08Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Controlling energy storage crossing quantum phase transitions in an integrable spin quantum battery [0.0]
We investigate the performance of a one-dimensional dimerized XY chain as a spin quantum battery.
We consider a charging protocol relying on the double quench of an internal parameter, namely the strength of the dimerization.
In the latter, the energy stored is almost unaffected by the charging time and the precise values of the charging parameters, provided the quench crosses a quantum phase transition.
arXiv Detail & Related papers (2024-02-14T13:40:48Z) - Off-resonant Dicke Quantum Battery: Charging by Virtual Photons [0.0]
We investigate a Dicke quantum battery in the dispersive regime, where the photons trapped into a resonant cavity are way more energetic with respect to the two-level systems embedded into it.
Under such off-resonant conditions, even an empty cavity can lead to the charging of the quantum battery through a proper modulation of the matter-radiation coupling.
arXiv Detail & Related papers (2023-02-27T09:47:41Z) - Quantum Work Capacitances: ultimate limits for energy extraction on noisy quantum batteries [1.1768314197952987]
We present a theoretical analysis of the energy recovery efficiency for quantum batteries composed of many identical quantum cells undergoing noise.
Explicit evaluations of such quantities are presented for the case where the energy storing system undergoes through dephasing and depolarizing noise.
arXiv Detail & Related papers (2022-11-04T18:08:46Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin-boson quantum phase transition in multilevel superconducting qubits [3.952191799203902]
We show that the intrinsic multilevel structure of superconducting qubits drastically restricts the validity of the spin-boson paradigm due to phase localization.
Imposing charge discreteness in a simple variational state accounts for these multilevel effects, that are relevant for a large class of devices.
arXiv Detail & Related papers (2020-10-02T14:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.