論文の概要: Interpretable Low-Dimensional Modeling of Spatiotemporal Agent States for Decision Making in Football Tactics
- arxiv url: http://arxiv.org/abs/2506.16696v1
- Date: Fri, 20 Jun 2025 02:37:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.312001
- Title: Interpretable Low-Dimensional Modeling of Spatiotemporal Agent States for Decision Making in Football Tactics
- Title(参考訳): サッカー競技における決定のための時空間エージェント状態の解釈可能な低次元モデリング
- Authors: Kenjiro Ide, Taiga Someya, Kohei Kawaguchi, Keisuke Fujii,
- Abstract要約: ルールベースのモデルは専門家の知識と一致するが、すべての選手の状態を十分に考慮していない。
提案手法は,ボールホルダ電位受信機の両方に対する解釈可能な状態変数を定義する。
解析の結果,選手とボールの間の距離と選手の空間スコアが,パスを成功させる上で重要な要因であることが判明した。
- 参考スコア(独自算出の注目度): 0.9207076627649226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding football tactics is crucial for managers and analysts. Previous research has proposed models based on spatial and kinematic equations, but these are computationally expensive. Also, Reinforcement learning approaches use player positions and velocities but lack interpretability and require large datasets. Rule-based models align with expert knowledge but have not fully considered all players' states. This study explores whether low-dimensional, rule-based models using spatiotemporal data can effectively capture football tactics. Our approach defines interpretable state variables for both the ball-holder and potential pass receivers, based on criteria that explore options like passing. Through discussions with a manager, we identified key variables representing the game state. We then used StatsBomb event data and SkillCorner tracking data from the 2023$/$24 LaLiga season to train an XGBoost model to predict pass success. The analysis revealed that the distance between the player and the ball, as well as the player's space score, were key factors in determining successful passes. Our interpretable low-dimensional modeling facilitates tactical analysis through the use of intuitive variables and provides practical value as a tool to support decision-making in football.
- Abstract(参考訳): サッカーの戦術を理解することはマネージャやアナリストにとって重要である。
従来の研究では、空間方程式と運動方程式に基づくモデルが提案されていたが、これらは計算に費用がかかる。
また、強化学習アプローチではプレイヤーの位置と速度を使用するが、解釈性に欠け、大規模なデータセットを必要とする。
ルールベースのモデルは専門家の知識と一致するが、すべての選手の状態を十分に考慮していない。
本研究では,時空間データを用いた低次元ルールベースモデルが,フットボールの戦術を効果的に捉えることができるかどうかを考察する。
ボールホルダーと潜在的なパスレシーバーの両方に対する解釈可能な状態変数は、パスのようなオプションを探索する基準に基づいて定義する。
マネージャとの議論を通じて,ゲーム状態を表す重要な変数を特定した。
次に、2023/24 LaLigaシーズンのStatsBombイベントデータとSkillCorner追跡データを使用して、パス成功を予測するためにXGBoostモデルをトレーニングしました。
解析の結果,選手とボールの間の距離と選手の空間スコアが,パスを成功させる上で重要な要因であることが判明した。
解釈可能な低次元モデリングは直観的変数を用いた戦術解析を容易にし,サッカーにおける意思決定を支援するツールとして実用的価値を提供する。
関連論文リスト
- CNN-based Game State Detection for a Foosball Table [1.612440288407791]
フォスボールのゲームでは、コンパクトで包括的なゲーム状態の記述は、フィギュアの位置シフトと回転と、時間とともにボールの位置で構成される。
本稿では,フォスボールのゲーム状態を決定するフィギュア検出システムについて述べる。
このデータセットを使用して、畳み込みニューラルネットワーク(CNN)ベースのエンドツーエンド回帰モデルをトレーニングし、各ロッドの回転とシフトを予測する。
論文 参考訳(メタデータ) (2024-04-08T09:48:02Z) - Explainable artificial intelligence model for identifying Market Value
in Professional Soccer Players [2.2590064835234913]
ソフィファの約12,000人のプレイヤーのデータを用いて、ボルタのアルゴリズムは特徴選択を合理化した。
グラディエントブースティング決定木(GBDT)モデルは予測精度に優れ、R-squaredは0.901、Root Mean Squared Error(RMSE)は3,221,632.175である。
論文 参考訳(メタデータ) (2023-11-08T11:01:32Z) - About latent roles in forecasting players in team sports [47.066729480128856]
チームスポーツは、チームメイトと相手とのインタラクションに影響を与える重要な社会的要素を含んでいる。
RolForはロールベースのForecastingのための新しいエンドツーエンドモデルです。
論文 参考訳(メタデータ) (2023-04-17T13:33:23Z) - Explainable expected goal models for performance analysis in football
analytics [5.802346990263708]
本報告では,2014-15年と2020-21年の7シーズンから315,430発のショットをトレーニングした,欧州サッカーリーグのトップ5のゴールモデルを提案する。
我々の知る限りでは、この論文は、プロファイルを集約した説明可能な人工知能ツールの実用的な応用を実証した最初の論文である。
論文 参考訳(メタデータ) (2022-06-14T23:56:03Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Learning Models as Functionals of Signed-Distance Fields for
Manipulation Planning [51.74463056899926]
本研究では,シーン内のオブジェクトを表す符号付き距離場の目的を学習する,最適化に基づく操作計画フレームワークを提案する。
オブジェクトを符号付き距離場として表現することは、ポイントクラウドや占有率の表現よりも高い精度で、様々なモデルの学習と表現を可能にする。
論文 参考訳(メタデータ) (2021-10-02T12:36:58Z) - Evaluating Soccer Player: from Live Camera to Deep Reinforcement
Learning [0.0]
オープンソースのプレイヤー追跡モデルと、Deep Reinforcement Learningのみに基づいてこれらのプレイヤーを評価する新しいアプローチの2つの部分のソリューションを紹介します。
私達の追跡モデルは私達がまた解放するデータセットの監視された方法で訓練され、私達の評価モデルは仮想サッカーゲームのシミュレーションだけに頼ります。
新たなアプローチであるExpected Discounted Goal(EDG)は、チームが特定の状態から獲得または達成できる目標の数を表します。
論文 参考訳(メタデータ) (2021-01-13T23:26:17Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
予測的および規範的フットボール分析は、統計学習、ゲーム理論、コンピュータビジョンの交差点における新たな発展と進歩を必要とする。
フットボール分析は、サッカー自体のゲームを変えるだけでなく、この領域がAIの分野で何を意味するのかという観点からも、非常に価値の高いゲームチェンジャーであることを示す。
論文 参考訳(メタデータ) (2020-11-18T10:26:02Z) - Using Player's Body-Orientation to Model Pass Feasibility in Soccer [7.205450793637325]
本稿では,サッカーの試合のモノラルな映像から,任意の時間に最も実現可能なパスを推定する計算モデルを提案する。
この方法は、攻撃的な選手の方向(および位置)と相手の空間構成を利用して、同じチームの選手内でのパスイベントの実現可能性を計算する。
その結果、配向を実現可能性尺度として含めることで、ロバストな計算モデルを構築することができ、0.7 Top-3の精度に達することが示されている。
論文 参考訳(メタデータ) (2020-04-15T17:09:51Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。